Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene Composites
The shrinkage of reinforced polymer composites in injection molding varies, depending on the properties of the reinforcing agent. Therefore, the study of optimal reinforcement conditions, to minimize shrinkage when talc and glass fibers (GF) (which are commonly used as reinforcements) are incorporat...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-03-01
|
Series: | Materials |
Subjects: | |
Online Access: | http://www.mdpi.com/1996-1944/12/5/764 |
id |
doaj-b5dbee1e4a8d47b4a5e417cb7880c7fb |
---|---|
record_format |
Article |
spelling |
doaj-b5dbee1e4a8d47b4a5e417cb7880c7fb2020-11-25T00:25:23ZengMDPI AGMaterials1996-19442019-03-0112576410.3390/ma12050764ma12050764Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene CompositesYoungjae Ryu0Joo Seong Sohn1Byung Chul Kweon2Sung Woon Cha3Department of Mechanical Engineering, Yonsei University, Seoul 03722, KoreaDepartment of Mechanical Engineering, Yonsei University, Seoul 03722, KoreaDepartment of Mechanical Engineering, Yonsei University, Seoul 03722, KoreaDepartment of Mechanical Engineering, Yonsei University, Seoul 03722, KoreaThe shrinkage of reinforced polymer composites in injection molding varies, depending on the properties of the reinforcing agent. Therefore, the study of optimal reinforcement conditions, to minimize shrinkage when talc and glass fibers (GF) (which are commonly used as reinforcements) are incorporated into polypropylene (PP), is required. In this study, we investigated the effect of reinforcement factors, such as reinforcement type, reinforcement content, and reinforcement particle size, on the shrinkage, and optimized these factors to minimize the shrinkage of the PP composites. We measured the shrinkage of injection-molded samples, and, based on the measured values, the optimal conditions were obtained through analysis of variance (ANOVA), the Taguchi method, and regression analysis. It was found that reinforcement type had the largest influence on shrinkage among the three factors, followed by reinforcement content. In contrast, the reinforcement size was not significant, compared to the other two factors. If the reinforcement size was set as an uncontrollable factor, the optimum condition for minimizing directional shrinkage was the incorporation of 20 wt % GF and that for differential shrinkage was the incorporation of 20 wt % talc. In addition, a shrinkage prediction method was proposed, in which two reinforcing agents were incorporated into PP, for the optimization of various dependent variables. The results of this study are expected to provide answers about which reinforcement agent should be selected and incorporated to minimize the shrinkage of PP composites.http://www.mdpi.com/1996-1944/12/5/764shrinkagetalcglass fiberpolypropyleneinjection moldingANOVAthe Taguchi methodregression analysis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Youngjae Ryu Joo Seong Sohn Byung Chul Kweon Sung Woon Cha |
spellingShingle |
Youngjae Ryu Joo Seong Sohn Byung Chul Kweon Sung Woon Cha Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene Composites Materials shrinkage talc glass fiber polypropylene injection molding ANOVA the Taguchi method regression analysis |
author_facet |
Youngjae Ryu Joo Seong Sohn Byung Chul Kweon Sung Woon Cha |
author_sort |
Youngjae Ryu |
title |
Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene Composites |
title_short |
Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene Composites |
title_full |
Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene Composites |
title_fullStr |
Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene Composites |
title_full_unstemmed |
Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene Composites |
title_sort |
shrinkage optimization in talc- and glass-fiber-reinforced polypropylene composites |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2019-03-01 |
description |
The shrinkage of reinforced polymer composites in injection molding varies, depending on the properties of the reinforcing agent. Therefore, the study of optimal reinforcement conditions, to minimize shrinkage when talc and glass fibers (GF) (which are commonly used as reinforcements) are incorporated into polypropylene (PP), is required. In this study, we investigated the effect of reinforcement factors, such as reinforcement type, reinforcement content, and reinforcement particle size, on the shrinkage, and optimized these factors to minimize the shrinkage of the PP composites. We measured the shrinkage of injection-molded samples, and, based on the measured values, the optimal conditions were obtained through analysis of variance (ANOVA), the Taguchi method, and regression analysis. It was found that reinforcement type had the largest influence on shrinkage among the three factors, followed by reinforcement content. In contrast, the reinforcement size was not significant, compared to the other two factors. If the reinforcement size was set as an uncontrollable factor, the optimum condition for minimizing directional shrinkage was the incorporation of 20 wt % GF and that for differential shrinkage was the incorporation of 20 wt % talc. In addition, a shrinkage prediction method was proposed, in which two reinforcing agents were incorporated into PP, for the optimization of various dependent variables. The results of this study are expected to provide answers about which reinforcement agent should be selected and incorporated to minimize the shrinkage of PP composites. |
topic |
shrinkage talc glass fiber polypropylene injection molding ANOVA the Taguchi method regression analysis |
url |
http://www.mdpi.com/1996-1944/12/5/764 |
work_keys_str_mv |
AT youngjaeryu shrinkageoptimizationintalcandglassfiberreinforcedpolypropylenecomposites AT jooseongsohn shrinkageoptimizationintalcandglassfiberreinforcedpolypropylenecomposites AT byungchulkweon shrinkageoptimizationintalcandglassfiberreinforcedpolypropylenecomposites AT sungwooncha shrinkageoptimizationintalcandglassfiberreinforcedpolypropylenecomposites |
_version_ |
1725349280958382080 |