Summary: | Maduramicin (MAD) is widely introduced into aquatic environments and results in the contamination of fish products. Worryingly, the consumption of MAD-contaminated crayfish (<i>Procambarus clarkii</i>) may induce symptoms of Haff disease. In this study, to monitor this potential contamination and to understand the residue and elimination characteristics of MAD in edible tissues of crayfish, a sensitive and efficient ultra-performance liquid chromatography–tandem mass spectrometry method was developed, validated, and applied. After extraction with acetonitrile and purification by solid-phase extraction column, multiple-reaction monitoring mass spectrometry with positive ionization mode was used to determine MAD’s residues. The limits of detection and of quantification were 6 μg·kg<sup>−1</sup> and 20 μg·kg<sup>−1</sup>, respectively. The fortified recoveries ranged from 74.2% to 110.4%, with relative standard deviation of 1.2% to 10.1%. Furthermore, MAD was completely eliminated after 3 and 5 days from abdominal muscle and hepatopancreas tissues of crayfish, respectively. The maximum residue limits (MRLs) of MAD respectively was 200 μg·kg<sup>−1</sup> in muscle and 600 μg·kg<sup>−1</sup> in the hepatopancreas, and its withdrawal time in both edible tissues was 25.8 °C·d. Collectively, the results of this study indicate the proposed method is an efficient tool to evaluate the public health risk associated with crayfish consumption.
|