Generating Local Search Neighborhood with Synthesized Logic Programs

Local Search meta-heuristics have been proven a viable approach to solve difficult optimization problems. Their performance depends strongly on the search space landscape, as defined by a cost function and the selected neighborhood operators. In this paper we present a logic programming based frame...

Full description

Bibliographic Details
Main Authors: Mateusz Ślażyński, Salvador Abreu, Grzegorz J. Nalepa
Format: Article
Language:English
Published: Open Publishing Association 2019-09-01
Series:Electronic Proceedings in Theoretical Computer Science
Online Access:http://arxiv.org/pdf/1909.08242v1
Description
Summary:Local Search meta-heuristics have been proven a viable approach to solve difficult optimization problems. Their performance depends strongly on the search space landscape, as defined by a cost function and the selected neighborhood operators. In this paper we present a logic programming based framework, named Noodle, designed to generate bespoke Local Search neighborhoods tailored to specific discrete optimization problems. The proposed system consists of a domain specific language, which is inspired by logic programming, as well as a genetic programming solver, based on the grammar evolution algorithm. We complement the description with a preliminary experimental evaluation, where we synthesize efficient neighborhood operators for the traveling salesman problem, some of which reproduce well-known results.
ISSN:2075-2180