Discretization methods for nonconvex differential inclusions
We prove the existence of solutions for the differential inclusion $\dot x(t)\in F(t,x(t)) + f(t,x(t))$ for a multifunction $F$ upper semicontinuous with compact values contained in the generalized Clarke gradient of a regular locally Lipschitz function and $f$ a Carath\'{e}odory function.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2009-03-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=365 |
id |
doaj-b58442da967e4f07bb66804d9d807407 |
---|---|
record_format |
Article |
spelling |
doaj-b58442da967e4f07bb66804d9d8074072021-07-14T07:21:20ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752009-03-0120091211010.14232/ejqtde.2009.1.12365Discretization methods for nonconvex differential inclusionsM. Yarou0University of Jijel, Jijel, AlgeriaWe prove the existence of solutions for the differential inclusion $\dot x(t)\in F(t,x(t)) + f(t,x(t))$ for a multifunction $F$ upper semicontinuous with compact values contained in the generalized Clarke gradient of a regular locally Lipschitz function and $f$ a Carath\'{e}odory function.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=365 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. Yarou |
spellingShingle |
M. Yarou Discretization methods for nonconvex differential inclusions Electronic Journal of Qualitative Theory of Differential Equations |
author_facet |
M. Yarou |
author_sort |
M. Yarou |
title |
Discretization methods for nonconvex differential inclusions |
title_short |
Discretization methods for nonconvex differential inclusions |
title_full |
Discretization methods for nonconvex differential inclusions |
title_fullStr |
Discretization methods for nonconvex differential inclusions |
title_full_unstemmed |
Discretization methods for nonconvex differential inclusions |
title_sort |
discretization methods for nonconvex differential inclusions |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2009-03-01 |
description |
We prove the existence of solutions for the differential inclusion $\dot x(t)\in F(t,x(t)) + f(t,x(t))$ for a multifunction $F$ upper semicontinuous with compact values contained in the generalized Clarke gradient of a regular locally Lipschitz function and $f$ a Carath\'{e}odory function. |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=365 |
work_keys_str_mv |
AT myarou discretizationmethodsfornonconvexdifferentialinclusions |
_version_ |
1721303860808515584 |