Inverse Design of Fe-Based Bulk Metallic Glasses Using Machine Learning

Fe-based bulk metallic glasses (BMGs) are a unique class of materials that are attracting attention in a wide variety of applications owing to their physical properties. Several studies have investigated and designed the relationships between alloy composition and thermal properties of BMGs using an...

Full description

Bibliographic Details
Main Authors: Junhyub Jeon, Namhyuk Seo, Hwijun Kim, Minha Lee, Hyunkyu Lim, Seungbae Son, Seokjae Lee
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/5/729
Description
Summary:Fe-based bulk metallic glasses (BMGs) are a unique class of materials that are attracting attention in a wide variety of applications owing to their physical properties. Several studies have investigated and designed the relationships between alloy composition and thermal properties of BMGs using an artificial neural network (ANN). The limitation of the wide-scale use of these models is that the required composition is yet to be found despite numerous case studies. To address this issue, we trained an ANN to design Fe-based BMGs that predict the thermal properties. Models were trained using only the composition of the alloy as input and were created from a database of more than 150 experimental data of Fe-based BMGs from relevant literature. We adopted these ANN models to design BMGs with thermal properties to satisfy the intended purpose using particle swarm optimization. A melt spinner was employed to fabricate the designed alloys. X-ray diffraction and differential thermal analysis tests were used to evaluate the specimens.
ISSN:2075-4701