A Multi-Stage Hybrid Fault Diagnosis Approach for Rolling Element Bearing Under Various Working Conditions

To timely detect bearing operating condition, and accurately identify bearing fault type and fault severity, a novel multi-stage hybrid fault diagnosis strategy for rolling bearing is proposed in this paper, which mainly consists of three stages (i.e. fault initial detection, fault type recognition...

Full description

Bibliographic Details
Main Authors: Xiaoan Yan, Ying Liu, Minping Jia, Yinlong Zhu
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8815765/
Description
Summary:To timely detect bearing operating condition, and accurately identify bearing fault type and fault severity, a novel multi-stage hybrid fault diagnosis strategy for rolling bearing is proposed in this paper, which mainly consists of three stages (i.e. fault initial detection, fault type recognition and fault severity assessment). Firstly, the procedure of permutation entropy (PE)-based fault initial detection is performed to estimate bearing operating condition. If the bearing fault exists, the next two stages are conducted for fault type recognition and fault severity assessment. Specifically, in the second and third stages, for each dataset under different fault conditions, hybrid-domain features including time-domain, frequency-domain and time-frequency domain are firstly extracted to establish high-dimensional feature space based on statistical analysis and variational mode decomposition (VMD). Then, locality preserving projection (LPP) is introduced to compress high-dimensional dataset into low-dimensional feature space which can reflect preferably intrinsic information of the raw signal and remove information redundancy embedded in hybrid-domain features. Finally, the obtained low-dimensional dataset is imported into Fuzzy C-means (FCM) clustering for recognizing bearing fault type and fault severity. The efficacy of the proposed approach is verified by experimental bearing data under different working conditions. The results indicate that our proposed method can both assess effectively bearing health status and recognize accurately bearing fault type and fault severity. In addition, our proposed approach has higher diagnosis precision than traditional single-stage diagnosis method mentioned in this paper.
ISSN:2169-3536