On the stability of a class of slowly varying systems

Abstract Slowly varying systems are common in physics and control engineering and thus stability analysis for those systems has drawn considerable attention in the literature. This paper uses the “frozen time approach” to derive Lyapunov inequality conditions for the stability of a wide class of slo...

Full description

Bibliographic Details
Main Authors: M. F. M. Naser, G. N. Gumah, S. K. Al-Omari, O. M. Bdair
Format: Article
Language:English
Published: SpringerOpen 2018-12-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-018-1934-1
Description
Summary:Abstract Slowly varying systems are common in physics and control engineering and thus stability analysis for those systems has drawn considerable attention in the literature. This paper uses the “frozen time approach” to derive Lyapunov inequality conditions for the stability of a wide class of slowly varying systems. These conditions refine those developed in (Khalil in Nonlinear Systems, 2002) and display generality and effectiveness for both linear and nonlinear systems. To illustrate the utility of the proposed results, an example has been included.
ISSN:1029-242X