Limiting Behavior of the Partial Sum for Negatively Superadditive Dependent Random Vectors in Hilbert Space

In this paper, We study the complete convergence and Lp- convergence for the maximum of the partial sum of negatively superadditive dependent random vectors in Hilbert space. The results extend the corresponding ones of Ko (Ko, 2020) to H-valued negatively superadditive dependent random vectors.

Bibliographic Details
Main Author: Mi-Hwa Ko
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2020/8609859
id doaj-b52efbe04f5e44b5b991ac3263c3b5f6
record_format Article
spelling doaj-b52efbe04f5e44b5b991ac3263c3b5f62020-11-25T01:25:41ZengHindawi LimitedJournal of Mathematics2314-46292314-47852020-01-01202010.1155/2020/86098598609859Limiting Behavior of the Partial Sum for Negatively Superadditive Dependent Random Vectors in Hilbert SpaceMi-Hwa Ko0Division of Mathematics and Informational Statistics, Wonkwang University, Jeonbuk 54538, Republic of KoreaIn this paper, We study the complete convergence and Lp- convergence for the maximum of the partial sum of negatively superadditive dependent random vectors in Hilbert space. The results extend the corresponding ones of Ko (Ko, 2020) to H-valued negatively superadditive dependent random vectors.http://dx.doi.org/10.1155/2020/8609859
collection DOAJ
language English
format Article
sources DOAJ
author Mi-Hwa Ko
spellingShingle Mi-Hwa Ko
Limiting Behavior of the Partial Sum for Negatively Superadditive Dependent Random Vectors in Hilbert Space
Journal of Mathematics
author_facet Mi-Hwa Ko
author_sort Mi-Hwa Ko
title Limiting Behavior of the Partial Sum for Negatively Superadditive Dependent Random Vectors in Hilbert Space
title_short Limiting Behavior of the Partial Sum for Negatively Superadditive Dependent Random Vectors in Hilbert Space
title_full Limiting Behavior of the Partial Sum for Negatively Superadditive Dependent Random Vectors in Hilbert Space
title_fullStr Limiting Behavior of the Partial Sum for Negatively Superadditive Dependent Random Vectors in Hilbert Space
title_full_unstemmed Limiting Behavior of the Partial Sum for Negatively Superadditive Dependent Random Vectors in Hilbert Space
title_sort limiting behavior of the partial sum for negatively superadditive dependent random vectors in hilbert space
publisher Hindawi Limited
series Journal of Mathematics
issn 2314-4629
2314-4785
publishDate 2020-01-01
description In this paper, We study the complete convergence and Lp- convergence for the maximum of the partial sum of negatively superadditive dependent random vectors in Hilbert space. The results extend the corresponding ones of Ko (Ko, 2020) to H-valued negatively superadditive dependent random vectors.
url http://dx.doi.org/10.1155/2020/8609859
work_keys_str_mv AT mihwako limitingbehaviorofthepartialsumfornegativelysuperadditivedependentrandomvectorsinhilbertspace
_version_ 1715773118097653760