Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors

<p>Information on liquid–liquid phase separation (LLPS) and viscosity (or diffusion) within secondary organic aerosol (SOA) is needed to improve predictions of particle size, mass, reactivity, and cloud nucleating properties in the atmosphere. Here we report on LLPS and viscosities within SOA...

Full description

Bibliographic Details
Main Authors: M. Song, A. M. Maclean, Y. Huang, N. R. Smith, S. L. Blair, J. Laskin, A. Laskin, W.-S. W. DeRieux, Y. Li, M. Shiraiwa, S. A. Nizkorodov, A. K. Bertram
Format: Article
Language:English
Published: Copernicus Publications 2019-10-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/12515/2019/acp-19-12515-2019.pdf
Description
Summary:<p>Information on liquid–liquid phase separation (LLPS) and viscosity (or diffusion) within secondary organic aerosol (SOA) is needed to improve predictions of particle size, mass, reactivity, and cloud nucleating properties in the atmosphere. Here we report on LLPS and viscosities within SOA generated by the photooxidation of diesel fuel vapors. Diesel fuel contains a wide range of volatile organic compounds, and SOA generated by the photooxidation of diesel fuel vapors may be a good proxy for SOA from anthropogenic emissions. In our experiments, LLPS occurred over the relative humidity (RH) range of <span class="inline-formula">∼70</span>&thinsp;% to <span class="inline-formula">∼100</span>&thinsp;%, resulting in an organic-rich outer phase and a water-rich inner phase. These results may have implications for predicting the cloud nucleating properties of anthropogenic SOA since the presence of an organic-rich outer phase at high-RH values can lower the supersaturation with respect to water required for cloud droplet formation. At <span class="inline-formula">≤10</span>&thinsp;%&thinsp;RH, the viscosity was <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>≥</mo><mn mathvariant="normal">1</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">8</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d3becb04dea2544bfec575e486a5f107"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12515-2019-ie00001.svg" width="46pt" height="14pt" src="acp-19-12515-2019-ie00001.png"/></svg:svg></span></span>&thinsp;Pa&thinsp;s, which corresponds to roughly the viscosity of tar pitch. At 38&thinsp;%–50&thinsp;%&thinsp;RH, the viscosity was in the range of <span class="inline-formula">1×10<sup>8</sup></span> to <span class="inline-formula">3×10<sup>5</sup></span>&thinsp;Pa&thinsp;s. These measured viscosities are consistent with predictions based on oxygen to carbon elemental ratio (<span class="inline-formula">O:C</span>) and molar mass as well as predictions based on the number of carbon, hydrogen, and oxygen atoms. Based on the measured viscosities and the Stokes–Einstein relation, at <span class="inline-formula">≤10</span>&thinsp;%&thinsp;RH diffusion coefficients of organics within diesel fuel SOA is <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>≤</mo><mn mathvariant="normal">5.4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">17</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="81f85a19804ee0bbb25c62f30c9dfc4e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12515-2019-ie00002.svg" width="65pt" height="14pt" src="acp-19-12515-2019-ie00002.png"/></svg:svg></span></span>&thinsp;cm<span class="inline-formula"><sup>2</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span> and the mixing time of organics within 200&thinsp;nm diesel fuel SOA particles (<span class="inline-formula"><i>τ</i><sub>mixing</sub></span>) is 50&thinsp;h. These small diffusion coefficients and large mixing times may be important in laboratory experiments, where SOA is often generated and studied using low-RH conditions and on timescales of minutes to hours. At 38&thinsp;%–50&thinsp;%&thinsp;RH, the calculated organic diffusion coefficients are in the range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">5.4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">17</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="55pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="b8aaddae8a73d2d23727b0f38112daf7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12515-2019-ie00003.svg" width="55pt" height="14pt" src="acp-19-12515-2019-ie00003.png"/></svg:svg></span></span> to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.8</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">13</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="55pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="bfcea12d119b18040d27e13eb2907160"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12515-2019-ie00004.svg" width="55pt" height="14pt" src="acp-19-12515-2019-ie00004.png"/></svg:svg></span></span>&thinsp;cm<span class="inline-formula"><sup>2</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span> and calculated <span class="inline-formula"><i>τ</i><sub>mixing</sub></span> values are in the range of <span class="inline-formula">∼0.01</span>&thinsp;h to <span class="inline-formula">∼50</span>&thinsp;h. These values provide important constraints for the physicochemical properties of anthropogenic SOA.</p>
ISSN:1680-7316
1680-7324