A data-driven approach for assessing biking safety in cities

Abstract With the focus that cities around the world have put on sustainable transportation during the past few years, biking has become one of the foci for local governments globally. Cities all over the world invest in biking infrastructure, including bike lanes, bike parking racks, shared (dockle...

Full description

Bibliographic Details
Main Authors: Sara Daraei, Konstantinos Pelechrinis, Daniele Quercia
Format: Article
Language:English
Published: SpringerOpen 2021-03-01
Series:EPJ Data Science
Subjects:
Online Access:https://doi.org/10.1140/epjds/s13688-021-00265-y
Description
Summary:Abstract With the focus that cities around the world have put on sustainable transportation during the past few years, biking has become one of the foci for local governments globally. Cities all over the world invest in biking infrastructure, including bike lanes, bike parking racks, shared (dockless) bike systems etc. However, one of the critical factors in converting city-dwellers to (regular) bike users/commuters is safety. In this work, we utilize bike accident data from different cities to model the biking safety based on street-level (geographical and infrastructural) features. Our evaluations indicate that our model provides well-calibrated probabilities that accurately capture the risk of a biking accident. We further perform cross-city comparisons in order to explore whether there are universal features that relate to cycling safety. Finally, we discuss and showcase how our model can be utilized to explore “what-if” scenarios and facilitate policy decision making.
ISSN:2193-1127