THE INFLUENCE OF “INJECTED” AND “THERMAL” MAGNONS ON A SPIN WAVE CURRENT AND DRAG EFFECT IN HYBRID STRUCTURES

The formation of the two: injected and thermally excited, different in energies magnon subsystems and the influence of its interaction with phonons and between on drag effect under spin Seebeck effect conditions in the magnetic insulator part of the metal/ferromagnetic insulator/metal structure is s...

Full description

Bibliographic Details
Main Authors: Lyapilin Igor, Okorokov Mikhail
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201818501022
Description
Summary:The formation of the two: injected and thermally excited, different in energies magnon subsystems and the influence of its interaction with phonons and between on drag effect under spin Seebeck effect conditions in the magnetic insulator part of the metal/ferromagnetic insulator/metal structure is studied. The analysis of the macroscopic momentum balance equations of the systems of interest conducted for different ratios of the drift velocities of the magnon and phonon currents show that the injected magnons relaxation on the thermal ones is possible to be dominant over its relaxation on phonons. This interaction will be the defining in the forming of the temperature dependence of the spin-wave current under spin Seebeck effect conditions, and inelastic part of the magnon-magnon interaction is the dominant spin relaxation mechanism.
ISSN:2100-014X