Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO<sub>2</sub> concentrations in a northern bog
Ombrotrophic peatlands depend on airborne nitrogen (N), whose deposition has increased in the past and lead to disappearance of mosses and increased shrub biomass in fertilization experiments. The response of soil water content, temperature, and carbon gas concentrations to increased nutrient loadin...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2011-03-01
|
Series: | Biogeosciences |
Online Access: | http://www.biogeosciences.net/8/585/2011/bg-8-585-2011.pdf |
id |
doaj-b4deaed203064570b61ce70e866cf483 |
---|---|
record_format |
Article |
spelling |
doaj-b4deaed203064570b61ce70e866cf4832020-11-25T01:15:31ZengCopernicus PublicationsBiogeosciences1726-41701726-41892011-03-018358559510.5194/bg-8-585-2011Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO<sub>2</sub> concentrations in a northern bogC. BlodauS. WendelT. MooreJ. BubierOmbrotrophic peatlands depend on airborne nitrogen (N), whose deposition has increased in the past and lead to disappearance of mosses and increased shrub biomass in fertilization experiments. The response of soil water content, temperature, and carbon gas concentrations to increased nutrient loading is poorly known and we thus determined these data at the long-term N fertilization site Mer Bleue bog, Ontario, during a two month period in summer. Soil temperatures decreased with NPK addition in shallow peat soil primarily during the daytime (t-test, <i>p</i> < 0.05) owing to increased shading, whereas they increased in deeper peat soil (t-test, <i>p</i> < 0.05), probably by enhanced thermal conductivity. These effects were confirmed by <sub>RM</sub>ANOVA, which also suggested an influence of volumetric water contents as co-variable on soil temperature and vice versa (<i>p</i> < 0.05). Averaged over all fertilized treatments, the mean soil temperatures at 5 cm depth decreased by 1.3 °C and by 4.7 °C (standard deviation 0.9 °C) at noon. Water content was most strongly affected by within-plot spatial heterogeneity but also responded to both N and PK load according to <sub>RM</sub>ANOVA (<i>p</i> < 0.05). Overall, water content and CO<sub>2</sub> concentrations in the near-surface peat (t-test, <i>p</i> < 0.05) were lower with increasing N load, suggesting more rapid soil gas exchange. The results thus suggest that changes in bog ecosystem structure with N deposition have significant ramifications for physical parameters that in turn control biogeochemical processes.http://www.biogeosciences.net/8/585/2011/bg-8-585-2011.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
C. Blodau S. Wendel T. Moore J. Bubier |
spellingShingle |
C. Blodau S. Wendel T. Moore J. Bubier Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO<sub>2</sub> concentrations in a northern bog Biogeosciences |
author_facet |
C. Blodau S. Wendel T. Moore J. Bubier |
author_sort |
C. Blodau |
title |
Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO<sub>2</sub> concentrations in a northern bog |
title_short |
Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO<sub>2</sub> concentrations in a northern bog |
title_full |
Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO<sub>2</sub> concentrations in a northern bog |
title_fullStr |
Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO<sub>2</sub> concentrations in a northern bog |
title_full_unstemmed |
Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO<sub>2</sub> concentrations in a northern bog |
title_sort |
experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil co<sub>2</sub> concentrations in a northern bog |
publisher |
Copernicus Publications |
series |
Biogeosciences |
issn |
1726-4170 1726-4189 |
publishDate |
2011-03-01 |
description |
Ombrotrophic peatlands depend on airborne nitrogen (N), whose deposition has increased in the past and lead to disappearance of mosses and increased shrub biomass in fertilization experiments. The response of soil water content, temperature, and carbon gas concentrations to increased nutrient loading is poorly known and we thus determined these data at the long-term N fertilization site Mer Bleue bog, Ontario, during a two month period in summer. Soil temperatures decreased with NPK addition in shallow peat soil primarily during the daytime (t-test, <i>p</i> < 0.05) owing to increased shading, whereas they increased in deeper peat soil (t-test, <i>p</i> < 0.05), probably by enhanced thermal conductivity. These effects were confirmed by <sub>RM</sub>ANOVA, which also suggested an influence of volumetric water contents as co-variable on soil temperature and vice versa (<i>p</i> < 0.05). Averaged over all fertilized treatments, the mean soil temperatures at 5 cm depth decreased by 1.3 °C and by 4.7 °C (standard deviation 0.9 °C) at noon. Water content was most strongly affected by within-plot spatial heterogeneity but also responded to both N and PK load according to <sub>RM</sub>ANOVA (<i>p</i> < 0.05). Overall, water content and CO<sub>2</sub> concentrations in the near-surface peat (t-test, <i>p</i> < 0.05) were lower with increasing N load, suggesting more rapid soil gas exchange. The results thus suggest that changes in bog ecosystem structure with N deposition have significant ramifications for physical parameters that in turn control biogeochemical processes. |
url |
http://www.biogeosciences.net/8/585/2011/bg-8-585-2011.pdf |
work_keys_str_mv |
AT cblodau experimentalnitrogenphosphorusandpotassiumdepositiondecreasessummersoiltemperatureswatercontentsandsoilcosub2subconcentrationsinanorthernbog AT swendel experimentalnitrogenphosphorusandpotassiumdepositiondecreasessummersoiltemperatureswatercontentsandsoilcosub2subconcentrationsinanorthernbog AT tmoore experimentalnitrogenphosphorusandpotassiumdepositiondecreasessummersoiltemperatureswatercontentsandsoilcosub2subconcentrationsinanorthernbog AT jbubier experimentalnitrogenphosphorusandpotassiumdepositiondecreasessummersoiltemperatureswatercontentsandsoilcosub2subconcentrationsinanorthernbog |
_version_ |
1725152736477970432 |