Hypoxic acclimation improves mitochondrial bioenergetic function in large yellow croaker Larimichthys crocea under Cu stress

The purpose of this study was to investigate how pre-hypoxia exposure affected the mitochondrial structure and bioenergetic function of large yellow croaker in responding to Cu stress. Fish were acclimated to normoxia and 3.0 mg DO L−1 for 48 h, then subjected to 0 and 120 μg Cu L−1 for another 48 h...

Full description

Bibliographic Details
Main Authors: Lin Zeng, Wen-Cheng Li, Hui Zhang, Ping Cao, Chun-Xiang Ai, Bing Hu, Wei Song
Format: Article
Language:English
Published: Elsevier 2021-11-01
Series:Ecotoxicology and Environmental Safety
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0147651321008009
Description
Summary:The purpose of this study was to investigate how pre-hypoxia exposure affected the mitochondrial structure and bioenergetic function of large yellow croaker in responding to Cu stress. Fish were acclimated to normoxia and 3.0 mg DO L−1 for 48 h, then subjected to 0 and 120 μg Cu L−1 for another 48 h. Hypoxic acclimation did not affect mitochondrial ultrastructure and reactive oxygen species (ROS), but reduced oxidative phosphorylation (OXPHOS) efficiency. Cu exposure impaired mitochondrial ultrastructure, increased ROS generation and inhibited OXPHOS efficiency. Compared with Cu exposure alone, hypoxic acclimation plus Cu exposure reduced ROS production and improved OXPHOS efficiency by enhancing mitochondrial respiratory control ratio, mitochondrial membrane potential, and activities and gene expressions of electron transport chain enzymes. In conclusion, hypoxic acclimation improved the mitochondrial energy metabolism of large yellow croaker under Cu stress, facilitating our understanding of the molecular mechanisms regarding adaptive responses of hypoxia-acclimated fish under Cu stress.
ISSN:0147-6513