Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting
Efficient harvest of solar energy beyond the silicon absorption edge of 1100 nm by semiconductor solar cells remains a challenge. Here Sun et al. mix high multi-bandgap lead sulfide colloidal quantum dot ensembles to further increase both short circuit current and open circuit voltage.
Main Authors: | Bin Sun, Olivier Ouellette, F. Pelayo García de Arquer, Oleksandr Voznyy, Younghoon Kim, Mingyang Wei, Andrew H. Proppe, Makhsud I. Saidaminov, Jixian Xu, Mengxia Liu, Peicheng Li, James Z. Fan, Jea Woong Jo, Hairen Tan, Furui Tan, Sjoerd Hoogland, Zheng Hong Lu, Shana O. Kelley, Edward H. Sargent |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-10-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-018-06342-7 |
Similar Items
-
Contactless measurements of photocarrier transport properties in perovskite single crystals
by: Xiwen Gong, et al.
Published: (2019-04-01) -
Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics
by: Min-Jae Choi, et al.
Published: (2020-01-01) -
Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites
by: Hairen Tan, et al.
Published: (2018-08-01) -
Mixed-quantum-dot solar cells
by: Zhenyu Yang, et al.
Published: (2017-11-01) -
Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems
by: Bin Chen, et al.
Published: (2020-03-01)