Continuidade espacial de chuvas intensas no estado de Minas Gerais Spatial continuity of intense rainfall in Minas Gerais State, Brazil
O mapeamento de variáveis climáticas, como chuvas intensas, é de fundamental importância para o manejo ambiental. Para isto, ferramentas estatísticas para interpolação espacial devem ser devidamente analisadas e caracterizadas. Assim, objetivou-se com este trabalho analisar modelos e métodos de mode...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidade Federal de Lavras
2008-04-01
|
Series: | Ciência e Agrotecnologia |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542008000200029 |
Summary: | O mapeamento de variáveis climáticas, como chuvas intensas, é de fundamental importância para o manejo ambiental. Para isto, ferramentas estatísticas para interpolação espacial devem ser devidamente analisadas e caracterizadas. Assim, objetivou-se com este trabalho analisar modelos e métodos de modelagem do semivariograma que melhor se ajustem a chuvas intensas com duração de 20, 60, 360 e 1440 minutos e tempos de retorno de 5, 50 e 100 anos, fornecendo subsídios primordiais para espacialização da mesma pelo interpolador geoestatístico, para o Estado de Minas Gerais. Foram testados os modelos esférico, exponencial e gaussiano pelos métodos de ajuste da Máxima Verossimilhança (MV) e Mínimos Quadrados Ponderados (MQP). Utilizou-se como critério de escolha do melhor modelo, o menor erro médio gerado pela validação cruzada, e em caso de similaridade, também foram considerados o maior grau de dependência espacial e o menor efeito pepita, além da análise visual do ajuste do modelo ao semivariograma experimental. O modelo exponencial se sobressaiu em nove das doze situações analisadas, o gaussiano em duas e o esférico em uma situação. Quanto aos métodos de ajuste, o MQP sobressaiu em todos os casos estudados, o que permite sugerir o modelo exponencial ajustado pelo método dos mínimos quadrados ponderados como sendo o mais adequado para o mapeamento da chuva intensa para as condições do Estado de Minas Gerais.<br>Climate variables mapping, as intense rainfall, is very important to environmental management. Although, statistical tools for spatial interpolation should be analyzed and characterized. This paper aims to analyze models and methods of semi-variogram modeling applied to intense rainfall with duration time of 20, 60, 360 and 1440 minutes and 5, 50 and 100 years of recurrence and consequently, giving support for its mapping, using kriging, in Minas Gerais State. Exponential, Spherical and Gaussian semi-variogram models were tested based on Weighted Minimum Square (WMS) and Maximum Likelihood (ML) methods, using GeoR software. For the best model and method evaluation was considered the mean absolute error produced by cross-validation. For mean error similarity, it was considered the spatial degree of dependence and smaller nugget effect. Visual adjustment of semi-variogram was also analyzed to complete the selection. Exponential model was predominant in nine of twelve situations, followed by Gaussian model in two situations and Spherical for just one. Weighted Minimum Square was the best adjust method in all situations. These results have indicated the exponential model adjusted by Weighted Minimum Square to intense rainfall mapping for Minas Gerais State conditions. |
---|---|
ISSN: | 1413-7054 1981-1829 |