Sufficient conditions to be exceptional
A copositive matrix A is said to be exceptional if it is not the sum of a positive semidefinite matrix and a nonnegative matrix. We show that with certain assumptions on A−1, especially on the diagonal entries, we can guarantee that a copositive matrix A is exceptional. We also show that the only 5-...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2016-01-01
|
Series: | Special Matrices |
Subjects: | |
Online Access: | http://www.degruyter.com/view/j/spma.2016.4.issue-1/spma-2016-0007/spma-2016-0007.xml?format=INT |
Summary: | A copositive matrix A is said to be exceptional if it is not the sum of a positive semidefinite matrix and a nonnegative matrix. We show that with certain assumptions on A−1, especially on the diagonal entries, we can guarantee that a copositive matrix A is exceptional. We also show that the only 5-by-5 exceptional matrix with a hollow nonnegative inverse is the Horn matrix (up to positive diagonal congruence and permutation similarity). |
---|---|
ISSN: | 2300-7451 |