Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks
This article reviews the problems of eye bottom fundus analysis and semantic segmentation algorithms used to distinguish the eye vessels and the optical disk. Various diseases, such as glaucoma, hypertension, diabetic retinopathy, macular degeneration, etc., can be diagnosed through changes and ano...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius University Press
2019-10-01
|
Series: | Informacijos Mokslai |
Subjects: | |
Online Access: | http://www.zurnalai.vu.lt/informacijos-mokslai/article/view/14798 |
id |
doaj-b461df17e2e74063a13b512a193cfbea |
---|---|
record_format |
Article |
spelling |
doaj-b461df17e2e74063a13b512a193cfbea2020-11-25T02:50:11ZengVilnius University PressInformacijos Mokslai1392-05611392-14872019-10-018510.15388/Im.2019.85.20Semantic Segmentation of Eye Fundus Images Using Convolutional Neural NetworksRičardas Toliušis0Olga Kurasova1Jolita Bernatavičienė2Vilnius University, LithuaniaVilnius University, LithuaniaVilnius University, Lithuania This article reviews the problems of eye bottom fundus analysis and semantic segmentation algorithms used to distinguish the eye vessels and the optical disk. Various diseases, such as glaucoma, hypertension, diabetic retinopathy, macular degeneration, etc., can be diagnosed through changes and anomalies of the vesssels and optical disk. Convolutional neural networks, especially the U-Net architecture, are well-suited for semantic segmentation. A number of U-Net modifications have been recently developed that deliver excellent performance results. http://www.zurnalai.vu.lt/informacijos-mokslai/article/view/14798U-Netdeep learningartificial neural networkssemantic segmentationeye fundus |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ričardas Toliušis Olga Kurasova Jolita Bernatavičienė |
spellingShingle |
Ričardas Toliušis Olga Kurasova Jolita Bernatavičienė Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks Informacijos Mokslai U-Net deep learning artificial neural networks semantic segmentation eye fundus |
author_facet |
Ričardas Toliušis Olga Kurasova Jolita Bernatavičienė |
author_sort |
Ričardas Toliušis |
title |
Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks |
title_short |
Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks |
title_full |
Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks |
title_fullStr |
Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks |
title_full_unstemmed |
Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks |
title_sort |
semantic segmentation of eye fundus images using convolutional neural networks |
publisher |
Vilnius University Press |
series |
Informacijos Mokslai |
issn |
1392-0561 1392-1487 |
publishDate |
2019-10-01 |
description |
This article reviews the problems of eye bottom fundus analysis and semantic segmentation algorithms used to distinguish the eye vessels and the optical disk. Various diseases, such as glaucoma, hypertension, diabetic retinopathy, macular degeneration, etc., can be diagnosed through changes and anomalies of the vesssels and optical disk. Convolutional neural networks, especially the U-Net architecture, are well-suited for semantic segmentation. A number of U-Net modifications have been recently developed that deliver excellent performance results.
|
topic |
U-Net deep learning artificial neural networks semantic segmentation eye fundus |
url |
http://www.zurnalai.vu.lt/informacijos-mokslai/article/view/14798 |
work_keys_str_mv |
AT ricardastoliusis semanticsegmentationofeyefundusimagesusingconvolutionalneuralnetworks AT olgakurasova semanticsegmentationofeyefundusimagesusingconvolutionalneuralnetworks AT jolitabernataviciene semanticsegmentationofeyefundusimagesusingconvolutionalneuralnetworks |
_version_ |
1724739406480277504 |