Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]
The authors of the above mentioned paper specify that the considered class of one-step symmetric Hermite-Obreshkov methods satisfies the property of conjugate-symplecticity up to order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi>...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-05-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/8/2/59 |
id |
doaj-b4592dd4199f46e687ac784dfa83707d |
---|---|
record_format |
Article |
spelling |
doaj-b4592dd4199f46e687ac784dfa83707d2020-11-24T21:45:15ZengMDPI AGAxioms2075-16802019-05-01825910.3390/axioms8020059axioms8020059Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]Francesca Mazzia0Alessandra Sestini1Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro, 70125 Bari, ItalyDipartimento di Matematica e Informatica U. Dini, Università di Firenze, 50134 Firenze, ItalyThe authors of the above mentioned paper specify that the considered class of one-step symmetric Hermite-Obreshkov methods satisfies the property of conjugate-symplecticity up to order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>r</mi> <mspace width="0.166667em"></mspace> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <i>p</i> is the order of the method. This generalization of conjugate-symplecticity states that the methods conserve quadratic first integrals and the Hamiltonian function over time intervals of length <inline-formula> <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <msup> <mi>h</mi> <mrow> <mo>−</mo> <mi>r</mi> </mrow> </msup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Theorem 1 of the above mentioned paper is then replaced by a new one. All the other results in the paper do not change. Two new figures related to the already considered Kepler problem are also added.https://www.mdpi.com/2075-1680/8/2/59initial value problemsone-step methodsHermite–Obreshkov methodssymplecticityB-splinesBS methods |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Francesca Mazzia Alessandra Sestini |
spellingShingle |
Francesca Mazzia Alessandra Sestini Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018] Axioms initial value problems one-step methods Hermite–Obreshkov methods symplecticity B-splines BS methods |
author_facet |
Francesca Mazzia Alessandra Sestini |
author_sort |
Francesca Mazzia |
title |
Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018] |
title_short |
Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018] |
title_full |
Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018] |
title_fullStr |
Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018] |
title_full_unstemmed |
Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018] |
title_sort |
corrigendum to “on a class of conjugate symplectic hermite–obreshkov one-step methods with continuous spline extension” [axioms 7(3), 58, 2018] |
publisher |
MDPI AG |
series |
Axioms |
issn |
2075-1680 |
publishDate |
2019-05-01 |
description |
The authors of the above mentioned paper specify that the considered class of one-step symmetric Hermite-Obreshkov methods satisfies the property of conjugate-symplecticity up to order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>r</mi> <mspace width="0.166667em"></mspace> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <i>p</i> is the order of the method. This generalization of conjugate-symplecticity states that the methods conserve quadratic first integrals and the Hamiltonian function over time intervals of length <inline-formula> <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <msup> <mi>h</mi> <mrow> <mo>−</mo> <mi>r</mi> </mrow> </msup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Theorem 1 of the above mentioned paper is then replaced by a new one. All the other results in the paper do not change. Two new figures related to the already considered Kepler problem are also added. |
topic |
initial value problems one-step methods Hermite–Obreshkov methods symplecticity B-splines BS methods |
url |
https://www.mdpi.com/2075-1680/8/2/59 |
work_keys_str_mv |
AT francescamazzia corrigendumtoonaclassofconjugatesymplectichermiteobreshkovonestepmethodswithcontinuoussplineextensionaxioms73582018 AT alessandrasestini corrigendumtoonaclassofconjugatesymplectichermiteobreshkovonestepmethodswithcontinuoussplineextensionaxioms73582018 |
_version_ |
1725905616988274688 |