Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]

The authors of the above mentioned paper specify that the considered class of one-step symmetric Hermite-Obreshkov methods satisfies the property of conjugate-symplecticity up to order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi>...

Full description

Bibliographic Details
Main Authors: Francesca Mazzia, Alessandra Sestini
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/8/2/59
id doaj-b4592dd4199f46e687ac784dfa83707d
record_format Article
spelling doaj-b4592dd4199f46e687ac784dfa83707d2020-11-24T21:45:15ZengMDPI AGAxioms2075-16802019-05-01825910.3390/axioms8020059axioms8020059Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]Francesca Mazzia0Alessandra Sestini1Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro, 70125 Bari, ItalyDipartimento di Matematica e Informatica U. Dini, Università di Firenze, 50134 Firenze, ItalyThe authors of the above mentioned paper specify that the considered class of one-step symmetric Hermite-Obreshkov methods satisfies the property of conjugate-symplecticity up to order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>r</mi> <mspace width="0.166667em"></mspace> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <i>p</i> is the order of the method. This generalization of conjugate-symplecticity states that the methods conserve quadratic first integrals and the Hamiltonian function over time intervals of length <inline-formula> <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <msup> <mi>h</mi> <mrow> <mo>&#8722;</mo> <mi>r</mi> </mrow> </msup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Theorem 1 of the above mentioned paper is then replaced by a new one. All the other results in the paper do not change. Two new figures related to the already considered Kepler problem are also added.https://www.mdpi.com/2075-1680/8/2/59initial value problemsone-step methodsHermite–Obreshkov methodssymplecticityB-splinesBS methods
collection DOAJ
language English
format Article
sources DOAJ
author Francesca Mazzia
Alessandra Sestini
spellingShingle Francesca Mazzia
Alessandra Sestini
Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]
Axioms
initial value problems
one-step methods
Hermite–Obreshkov methods
symplecticity
B-splines
BS methods
author_facet Francesca Mazzia
Alessandra Sestini
author_sort Francesca Mazzia
title Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]
title_short Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]
title_full Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]
title_fullStr Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]
title_full_unstemmed Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]
title_sort corrigendum to “on a class of conjugate symplectic hermite–obreshkov one-step methods with continuous spline extension” [axioms 7(3), 58, 2018]
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2019-05-01
description The authors of the above mentioned paper specify that the considered class of one-step symmetric Hermite-Obreshkov methods satisfies the property of conjugate-symplecticity up to order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>r</mi> <mspace width="0.166667em"></mspace> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <i>p</i> is the order of the method. This generalization of conjugate-symplecticity states that the methods conserve quadratic first integrals and the Hamiltonian function over time intervals of length <inline-formula> <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <msup> <mi>h</mi> <mrow> <mo>&#8722;</mo> <mi>r</mi> </mrow> </msup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Theorem 1 of the above mentioned paper is then replaced by a new one. All the other results in the paper do not change. Two new figures related to the already considered Kepler problem are also added.
topic initial value problems
one-step methods
Hermite–Obreshkov methods
symplecticity
B-splines
BS methods
url https://www.mdpi.com/2075-1680/8/2/59
work_keys_str_mv AT francescamazzia corrigendumtoonaclassofconjugatesymplectichermiteobreshkovonestepmethodswithcontinuoussplineextensionaxioms73582018
AT alessandrasestini corrigendumtoonaclassofconjugatesymplectichermiteobreshkovonestepmethodswithcontinuoussplineextensionaxioms73582018
_version_ 1725905616988274688