Corrigendum to “On a Class of Conjugate Symplectic Hermite–Obreshkov One-Step Methods with Continuous Spline Extension” [Axioms 7(3), 58, 2018]
The authors of the above mentioned paper specify that the considered class of one-step symmetric Hermite-Obreshkov methods satisfies the property of conjugate-symplecticity up to order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi>...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-05-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/8/2/59 |
Summary: | The authors of the above mentioned paper specify that the considered class of one-step symmetric Hermite-Obreshkov methods satisfies the property of conjugate-symplecticity up to order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>+</mo> <mi>r</mi> <mspace width="0.166667em"></mspace> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> and <i>p</i> is the order of the method. This generalization of conjugate-symplecticity states that the methods conserve quadratic first integrals and the Hamiltonian function over time intervals of length <inline-formula> <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <msup> <mi>h</mi> <mrow> <mo>−</mo> <mi>r</mi> </mrow> </msup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Theorem 1 of the above mentioned paper is then replaced by a new one. All the other results in the paper do not change. Two new figures related to the already considered Kepler problem are also added. |
---|---|
ISSN: | 2075-1680 |