PALSAR 50 m mosaic data based national level biomass estimation in Cambodia for implementation of REDD+ mechanism.

Tropical countries like Cambodia require information about forest biomass for successful implementation of climate change mitigation mechanism related to Reducing Emissions from Deforestation and forest Degradation (REDD+). This study investigated the potential of Phased Array-type L-band Synthetic...

Full description

Bibliographic Details
Main Authors: Ram Avtar, Rikie Suzuki, Wataru Takeuchi, Haruo Sawada
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3792093?pdf=render
Description
Summary:Tropical countries like Cambodia require information about forest biomass for successful implementation of climate change mitigation mechanism related to Reducing Emissions from Deforestation and forest Degradation (REDD+). This study investigated the potential of Phased Array-type L-band Synthetic Aperture Radar Fine Beam Dual (PALSAR FBD) 50 m mosaic data to estimate Above Ground Biomass (AGB) in Cambodia. AGB was estimated using a bottom-up approach based on field measured biomass and backscattering (σ(o)) properties of PALSAR data. The relationship between the PALSAR σ(o) HV and HH/HV with field measured biomass was strong with R(2) = 0.67 and 0.56, respectively. PALSAR estimated AGB show good results in deciduous forests because of less saturation as compared to dense evergreen forests. The validation results showed a high coefficient of determination R(2) = 0.61 with RMSE  = 21 Mg/ha using values up to 200 Mg/ha biomass. There were some uncertainties because of the uncertainty in the field based measurement and saturation of PALSAR data. AGB map of Cambodian forests could be useful for the implementation of forest management practices for REDD+ assessment and policies implementation at the national level.
ISSN:1932-6203