Modeling and Experiment of a V-Shaped Piezoelectric Energy Harvester
Vibration-based energy harvesting technology is the most promising method to solve the problems of self-powered wireless sensor nodes, but most of the vibration-based energy harvesters have a rather narrow operation bandwidth and the operation frequency band is not convenient to adjust when the ambi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2018/7082724 |
id |
doaj-b45029b501894aa3bcab8baab71b8f7e |
---|---|
record_format |
Article |
spelling |
doaj-b45029b501894aa3bcab8baab71b8f7e2020-11-24T22:37:36ZengHindawi LimitedShock and Vibration1070-96221875-92032018-01-01201810.1155/2018/70827247082724Modeling and Experiment of a V-Shaped Piezoelectric Energy HarvesterYue Zhao0Yi Qin1Lei Guo2Baoping Tang3State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, ChinaState Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, ChinaState Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, ChinaState Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, ChinaVibration-based energy harvesting technology is the most promising method to solve the problems of self-powered wireless sensor nodes, but most of the vibration-based energy harvesters have a rather narrow operation bandwidth and the operation frequency band is not convenient to adjust when the ambient frequency changes. Since the ambient vibration may be broadband and changeable, a novel V-shaped vibration energy harvester based on the conventional piezoelectric bimorph cantilevered structure is proposed, which successfully improves the energy harvesting efficiency and provides a way to adjust the operation frequency band of the energy harvester conveniently. The electromechanical coupling equations are established by using Euler-Bernoulli equation and piezoelectric equation, and then the coupled circuit equation is derived based on the series connected piezoelectric cantilevers and Kirchhoff's laws. With the above equations, the output performances of V-shaped structure under different structural parameters and load resistances are simulated and discussed. Finally, by changing the angle θ between two piezoelectric bimorph beams and the load resistance, various comprehensive experiments are carried out to test the performance of this V-shaped energy harvester under the same excitation. The experimental results show that the V-shaped energy harvester can not only improve the frequency response characteristic and the output performance of the electrical energy, but also conveniently tune the operation bandwidth; thus it has great application potential in actual structure health monitoring under variable working condition.http://dx.doi.org/10.1155/2018/7082724 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yue Zhao Yi Qin Lei Guo Baoping Tang |
spellingShingle |
Yue Zhao Yi Qin Lei Guo Baoping Tang Modeling and Experiment of a V-Shaped Piezoelectric Energy Harvester Shock and Vibration |
author_facet |
Yue Zhao Yi Qin Lei Guo Baoping Tang |
author_sort |
Yue Zhao |
title |
Modeling and Experiment of a V-Shaped Piezoelectric Energy Harvester |
title_short |
Modeling and Experiment of a V-Shaped Piezoelectric Energy Harvester |
title_full |
Modeling and Experiment of a V-Shaped Piezoelectric Energy Harvester |
title_fullStr |
Modeling and Experiment of a V-Shaped Piezoelectric Energy Harvester |
title_full_unstemmed |
Modeling and Experiment of a V-Shaped Piezoelectric Energy Harvester |
title_sort |
modeling and experiment of a v-shaped piezoelectric energy harvester |
publisher |
Hindawi Limited |
series |
Shock and Vibration |
issn |
1070-9622 1875-9203 |
publishDate |
2018-01-01 |
description |
Vibration-based energy harvesting technology is the most promising method to solve the problems of self-powered wireless sensor nodes, but most of the vibration-based energy harvesters have a rather narrow operation bandwidth and the operation frequency band is not convenient to adjust when the ambient frequency changes. Since the ambient vibration may be broadband and changeable, a novel V-shaped vibration energy harvester based on the conventional piezoelectric bimorph cantilevered structure is proposed, which successfully improves the energy harvesting efficiency and provides a way to adjust the operation frequency band of the energy harvester conveniently. The electromechanical coupling equations are established by using Euler-Bernoulli equation and piezoelectric equation, and then the coupled circuit equation is derived based on the series connected piezoelectric cantilevers and Kirchhoff's laws. With the above equations, the output performances of V-shaped structure under different structural parameters and load resistances are simulated and discussed. Finally, by changing the angle θ between two piezoelectric bimorph beams and the load resistance, various comprehensive experiments are carried out to test the performance of this V-shaped energy harvester under the same excitation. The experimental results show that the V-shaped energy harvester can not only improve the frequency response characteristic and the output performance of the electrical energy, but also conveniently tune the operation bandwidth; thus it has great application potential in actual structure health monitoring under variable working condition. |
url |
http://dx.doi.org/10.1155/2018/7082724 |
work_keys_str_mv |
AT yuezhao modelingandexperimentofavshapedpiezoelectricenergyharvester AT yiqin modelingandexperimentofavshapedpiezoelectricenergyharvester AT leiguo modelingandexperimentofavshapedpiezoelectricenergyharvester AT baopingtang modelingandexperimentofavshapedpiezoelectricenergyharvester |
_version_ |
1725716371941097472 |