Cells responsible for liver mass regeneration in rats with 2-acetylaminofluorene/partial hepatectomy injury

Abstract Background Whether hepatic progenitor cells (HPCs)/oval cells regenerate liver mass upon chronic liver injury is controversial in mice and has not been conclusively proven in humans and rats. In this study, we examined which cell type—hepatocytes or oval cells—mediates liver regeneration in...

Full description

Bibliographic Details
Main Authors: Chin-Sung Chien, Ya-Hui Chen, Hui-Ling Chen, Chiu-Ping Wang, Shang-Hsin Wu, Shu-Li Ho, Wen-Cheng Huang, Chun-Hsien Yu, Mei-Hwei Chang
Format: Article
Language:English
Published: BMC 2018-04-01
Series:Journal of Biomedical Science
Subjects:
Rat
Online Access:http://link.springer.com/article/10.1186/s12929-018-0441-5
Description
Summary:Abstract Background Whether hepatic progenitor cells (HPCs)/oval cells regenerate liver mass upon chronic liver injury is controversial in mice and has not been conclusively proven in humans and rats. In this study, we examined which cell type—hepatocytes or oval cells—mediates liver regeneration in the classic rat 2-acetylaminofluorene (AAF)/partial hepatectomy (PH) injury where AAF reversibly blocks hepatocyte proliferation, thereby inducing oval cell expansion after the regenerative stimulus of PH. Methods We employed lineage tracing of dipeptidyl peptidase IV (DPPIV, a hepatocyte canalicular enzyme)-positive hepatocytes by subjecting rats with DPPIV-chimeric livers to AAF/PH, AAF/PH/AAF (continuous AAF after AAF/PH to nonselectively inhibit regenerating hepatocytes), or AAF/PH/retrorsine injury (2-dose retrorsine after AAF/PH to specifically and irreversibly block existing hepatocytes); through these methods, we determined hepatocyte contribution to liver regeneration. To determine the oval cell contribution to hepatocyte regeneration, we performed DPPIV(+) oval cell transplantation combined with AAF/PH injury or AAF/PH/retrorsine injury in DPPIV-deficient rats to track the fate of DPPIV(+) oval cells. Results DPPIV-chimeric livers demonstrated typical oval cell activation upon AAF/PH injury. After cessation of AAF, DPPIV(+) hepatocytes underwent extensive proliferation to regenerate the liver mass, whereas oval cells underwent hepatocyte differentiation. Upon AAF/PH/AAF injury where hepatocyte proliferation was inhibited by continuous AAF treatment following AAF/PH, oval cells extensively expanded in an undifferentiated state but did not produce hepatocytes. By substituting retrorsine for AAF administration following AAF/PH (AAF/PH/retrorsine), oval cells regenerated large-scale hepatocytes. Conclusions Hepatocyte self-replication provides the majority of hepatocyte regeneration, with supplementary contribution from oval cells in rats under AAF/PH injury. Oval cells expand and maintain in an undifferentiated state upon continuously nonselective liver injury, whereas they can significantly regenerate hepatocytes in a noncompetitive environment.
ISSN:1423-0127