Automated calculation and convergence of defect transport tensors
Abstract Defect diffusion is a key process in materials science and catalysis, but as migration mechanisms are often too complex to enumerate a priori, calculation of transport tensors typically have no measure of convergence and require significant end-user intervention. These two bottlenecks preve...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-12-01
|
Series: | npj Computational Materials |
Online Access: | https://doi.org/10.1038/s41524-020-00463-8 |
id |
doaj-b43319cc531a461c817636df06ce17aa |
---|---|
record_format |
Article |
spelling |
doaj-b43319cc531a461c817636df06ce17aa2020-12-13T12:15:54ZengNature Publishing Groupnpj Computational Materials2057-39602020-12-01611710.1038/s41524-020-00463-8Automated calculation and convergence of defect transport tensorsThomas D. Swinburne0Danny Perez1Aix-Marseille Université, CNRSTheoretical Division T-1, Los Alamos National LaboratoryAbstract Defect diffusion is a key process in materials science and catalysis, but as migration mechanisms are often too complex to enumerate a priori, calculation of transport tensors typically have no measure of convergence and require significant end-user intervention. These two bottlenecks prevent high-throughput implementations essential to propagate model-form uncertainty from interatomic interactions to predictive simulations. In order to address these issues, we extend a massively parallel accelerated sampling scheme, autonomously controlled by Bayesian estimators of statewide sampling completeness, to build atomistic kinetic Monte Carlo models on a state-space irreducible under exchange and space group symmetries. Focusing on isolated defects, we derive analytic expressions for drift and diffusion coefficients, providing a convergence metric by calculating the Kullback–Leibler divergence across the ensemble of diffusion processes consistent with the sampling uncertainty. The autonomy and efficacy of the method is demonstrated on surface trimers in tungsten and Hexa-interstitials in magnesium oxide, both of which exhibit complex, correlated migration mechanisms.https://doi.org/10.1038/s41524-020-00463-8 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Thomas D. Swinburne Danny Perez |
spellingShingle |
Thomas D. Swinburne Danny Perez Automated calculation and convergence of defect transport tensors npj Computational Materials |
author_facet |
Thomas D. Swinburne Danny Perez |
author_sort |
Thomas D. Swinburne |
title |
Automated calculation and convergence of defect transport tensors |
title_short |
Automated calculation and convergence of defect transport tensors |
title_full |
Automated calculation and convergence of defect transport tensors |
title_fullStr |
Automated calculation and convergence of defect transport tensors |
title_full_unstemmed |
Automated calculation and convergence of defect transport tensors |
title_sort |
automated calculation and convergence of defect transport tensors |
publisher |
Nature Publishing Group |
series |
npj Computational Materials |
issn |
2057-3960 |
publishDate |
2020-12-01 |
description |
Abstract Defect diffusion is a key process in materials science and catalysis, but as migration mechanisms are often too complex to enumerate a priori, calculation of transport tensors typically have no measure of convergence and require significant end-user intervention. These two bottlenecks prevent high-throughput implementations essential to propagate model-form uncertainty from interatomic interactions to predictive simulations. In order to address these issues, we extend a massively parallel accelerated sampling scheme, autonomously controlled by Bayesian estimators of statewide sampling completeness, to build atomistic kinetic Monte Carlo models on a state-space irreducible under exchange and space group symmetries. Focusing on isolated defects, we derive analytic expressions for drift and diffusion coefficients, providing a convergence metric by calculating the Kullback–Leibler divergence across the ensemble of diffusion processes consistent with the sampling uncertainty. The autonomy and efficacy of the method is demonstrated on surface trimers in tungsten and Hexa-interstitials in magnesium oxide, both of which exhibit complex, correlated migration mechanisms. |
url |
https://doi.org/10.1038/s41524-020-00463-8 |
work_keys_str_mv |
AT thomasdswinburne automatedcalculationandconvergenceofdefecttransporttensors AT dannyperez automatedcalculationandconvergenceofdefecttransporttensors |
_version_ |
1724385074459181056 |