Global attractor of the extended Fisher-Kolmogorov equation in <it>H<sup>k </sup></it>spaces
<p>Abstract</p> <p>The long-time behavior of solution to extended Fisher-Kolmogorov equation is considered in this article. Using an iteration procedure, regularity estimates for the linear semigroups and a classical existence theorem of global attractor, we prove that the extended...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2011-01-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://www.boundaryvalueproblems.com/content/2011/1/39 |
id |
doaj-b3d7d260c53b41ab83b611e5b5916fa2 |
---|---|
record_format |
Article |
spelling |
doaj-b3d7d260c53b41ab83b611e5b5916fa22020-11-24T23:58:14ZengSpringerOpenBoundary Value Problems1687-27621687-27702011-01-012011139Global attractor of the extended Fisher-Kolmogorov equation in <it>H<sup>k </sup></it>spacesLuo Hong<p>Abstract</p> <p>The long-time behavior of solution to extended Fisher-Kolmogorov equation is considered in this article. Using an iteration procedure, regularity estimates for the linear semigroups and a classical existence theorem of global attractor, we prove that the extended Fisher-Kolmogorov equation possesses a global attractor in Sobolev space <it>H<sup>k </sup></it>for all <it>k </it>> 0, which attracts any bounded subset of <it>H<sup>k</sup> </it>(Ω) in the <it>H<sup>k</sup> </it>-norm.</p> <p><b>2000 Mathematics Subject Classification: </b>35B40; 35B41; 35K25; 35K30.</p> http://www.boundaryvalueproblems.com/content/2011/1/39semigroup of operatorglobal attractorextended Fisher-Kolmogorov equationregularity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Luo Hong |
spellingShingle |
Luo Hong Global attractor of the extended Fisher-Kolmogorov equation in <it>H<sup>k </sup></it>spaces Boundary Value Problems semigroup of operator global attractor extended Fisher-Kolmogorov equation regularity |
author_facet |
Luo Hong |
author_sort |
Luo Hong |
title |
Global attractor of the extended Fisher-Kolmogorov equation in <it>H<sup>k </sup></it>spaces |
title_short |
Global attractor of the extended Fisher-Kolmogorov equation in <it>H<sup>k </sup></it>spaces |
title_full |
Global attractor of the extended Fisher-Kolmogorov equation in <it>H<sup>k </sup></it>spaces |
title_fullStr |
Global attractor of the extended Fisher-Kolmogorov equation in <it>H<sup>k </sup></it>spaces |
title_full_unstemmed |
Global attractor of the extended Fisher-Kolmogorov equation in <it>H<sup>k </sup></it>spaces |
title_sort |
global attractor of the extended fisher-kolmogorov equation in <it>h<sup>k </sup></it>spaces |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2762 1687-2770 |
publishDate |
2011-01-01 |
description |
<p>Abstract</p> <p>The long-time behavior of solution to extended Fisher-Kolmogorov equation is considered in this article. Using an iteration procedure, regularity estimates for the linear semigroups and a classical existence theorem of global attractor, we prove that the extended Fisher-Kolmogorov equation possesses a global attractor in Sobolev space <it>H<sup>k </sup></it>for all <it>k </it>> 0, which attracts any bounded subset of <it>H<sup>k</sup> </it>(Ω) in the <it>H<sup>k</sup> </it>-norm.</p> <p><b>2000 Mathematics Subject Classification: </b>35B40; 35B41; 35K25; 35K30.</p> |
topic |
semigroup of operator global attractor extended Fisher-Kolmogorov equation regularity |
url |
http://www.boundaryvalueproblems.com/content/2011/1/39 |
work_keys_str_mv |
AT luohong globalattractoroftheextendedfisherkolmogorovequationinithsupksupitspaces |
_version_ |
1725450958010318848 |