Modeling and Robustness Study of Railway Transport Networks Using P-Timed Petri Nets
The importance of public transport systems continues to grow. These systems must respond to an increasing demand for population mobility and traffic disturbances. Rail transport networks can be considered as Discrete Event Systems (DES) with time constraints. The time factor is a critical parameter,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Journal of Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/2083576 |
Summary: | The importance of public transport systems continues to grow. These systems must respond to an increasing demand for population mobility and traffic disturbances. Rail transport networks can be considered as Discrete Event Systems (DES) with time constraints. The time factor is a critical parameter, since it includes dates to be respected in order to avoid overlaps, delays, and collisions between trains. P-time Petri Nets have been recognized as powerful modeling and analysis tools for railway transport systems. Temporal disturbances in these systems include railway infrastructure, traffic management, and disturbances (weather, obstacles on the tracks, malice, social movement, etc.). The developments presented in this paper are devoted to the modeling and the study of the robustness of the railway transport systems in order to evaluate the stability and the efficiency of these networks. In this study two robust control strategies towards time disturbances are presented. The first one consists of compensating the disturbance as soon as it is observed in order to avoid constraints violation. The second one allows generating, by the control, a temporal lag identical to the disturbance in order to avoid the death of marks on the levels of synchronization transitions of the P-time Petri net model. |
---|---|
ISSN: | 2314-4904 2314-4912 |