A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application
This paper describes details of an automatic matrix decomposition approach for a reaction-based stream water quality model. The method yields a set of equilibrium equations, a set of kinetic-variable transport equations involving kinetic reactions only, and a set of component transport equations inv...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Chinese Geoscience Union
2012-01-01
|
Series: | Terrestrial, Atmospheric and Oceanic Sciences |
Subjects: | |
Online Access: |
http://tao.cgu.org.tw/images/attachments/v235p605.pdf
|
id |
doaj-b38af4e0d5ec4881b25b9bf6b64e94c0 |
---|---|
record_format |
Article |
spelling |
doaj-b38af4e0d5ec4881b25b9bf6b64e94c02020-11-25T01:12:53ZengChinese Geoscience UnionTerrestrial, Atmospheric and Oceanic Sciences1017-08392311-76802012-01-0123560510.3319/TAO.2012.05.23.02(WMH)1097A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model ApplicationFan ZhangGour-Tsyh YehJack C. ParkerHongbo ZhangXiaonan ShiCheng WangRuochuan GuThis paper describes details of an automatic matrix decomposition approach for a reaction-based stream water quality model. The method yields a set of equilibrium equations, a set of kinetic-variable transport equations involving kinetic reactions only, and a set of component transport equations involving no reactions. Partial decomposition of the system of water quality constituent transport equations is performed via Gauss-Jordan column reduction of the reaction network by pivoting on equilibrium reactions to decouple equilibrium and kinetic reactions. This approach minimizes the number of partial differential advective-dispersive transport equations and enables robust numerical integration. Complete matrix decomposition by further pivoting on linearly independent kinetic reactions allows some rate equations to be formulated individually and explicitly enforces conservation of component species when component transport equations are solved. The methodology is demonstrated for a case study involving eutrophication reactions in the Des Moines River in Iowa, USA and for two hypothetical examples to illustrate the ability of the model to simulate sediment and chemical transport with both mobile and immobile water phases and with complex reaction networks involving both kinetic and equilibrium reactions. http://tao.cgu.org.tw/images/attachments/v235p605.pdf Sediment transportWater quality modelsRivers/streamsChemical reactionsChemical equilibrium/kineticsEutrophication |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fan Zhang Gour-Tsyh Yeh Jack C. Parker Hongbo Zhang Xiaonan Shi Cheng Wang Ruochuan Gu |
spellingShingle |
Fan Zhang Gour-Tsyh Yeh Jack C. Parker Hongbo Zhang Xiaonan Shi Cheng Wang Ruochuan Gu A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application Terrestrial, Atmospheric and Oceanic Sciences Sediment transport Water quality models Rivers/streams Chemical reactions Chemical equilibrium/kinetics Eutrophication |
author_facet |
Fan Zhang Gour-Tsyh Yeh Jack C. Parker Hongbo Zhang Xiaonan Shi Cheng Wang Ruochuan Gu |
author_sort |
Fan Zhang |
title |
A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application |
title_short |
A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application |
title_full |
A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application |
title_fullStr |
A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application |
title_full_unstemmed |
A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application |
title_sort |
reaction-based river/stream water quality model: reaction network decomposition and model application |
publisher |
Chinese Geoscience Union |
series |
Terrestrial, Atmospheric and Oceanic Sciences |
issn |
1017-0839 2311-7680 |
publishDate |
2012-01-01 |
description |
This paper describes details of an automatic matrix decomposition approach for a reaction-based stream water quality model. The method yields a set of equilibrium equations, a set of kinetic-variable transport equations involving kinetic reactions only, and a set of component transport equations involving no reactions. Partial decomposition of the system of water quality constituent transport equations is performed via Gauss-Jordan column reduction of the reaction network by pivoting on equilibrium reactions to decouple equilibrium and kinetic reactions. This approach minimizes the number of partial differential advective-dispersive transport equations and enables robust numerical integration. Complete matrix decomposition by further pivoting on linearly independent kinetic reactions allows some rate equations to be formulated individually and explicitly enforces conservation of component species when component transport equations are solved. The methodology is demonstrated for a case study involving eutrophication reactions in the Des Moines River in Iowa, USA and for two hypothetical examples to illustrate the ability of the model to simulate sediment and chemical transport with both mobile and immobile water phases and with complex reaction networks involving both kinetic and equilibrium reactions. |
topic |
Sediment transport Water quality models Rivers/streams Chemical reactions Chemical equilibrium/kinetics Eutrophication |
url |
http://tao.cgu.org.tw/images/attachments/v235p605.pdf
|
work_keys_str_mv |
AT fanzhang areactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT gourtsyhyeh areactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT jackcparker areactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT hongbozhang areactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT xiaonanshi areactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT chengwang areactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT ruochuangu areactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT fanzhang reactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT gourtsyhyeh reactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT jackcparker reactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT hongbozhang reactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT xiaonanshi reactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT chengwang reactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication AT ruochuangu reactionbasedriverstreamwaterqualitymodelreactionnetworkdecompositionandmodelapplication |
_version_ |
1725164422281822208 |