A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application

This paper describes details of an automatic matrix decomposition approach for a reaction-based stream water quality model. The method yields a set of equilibrium equations, a set of kinetic-variable transport equations involving kinetic reactions only, and a set of component transport equations inv...

Full description

Bibliographic Details
Main Authors: Fan Zhang, Gour-Tsyh Yeh, Jack C. Parker, Hongbo Zhang, Xiaonan Shi, Cheng Wang, Ruochuan Gu
Format: Article
Language:English
Published: Chinese Geoscience Union 2012-01-01
Series:Terrestrial, Atmospheric and Oceanic Sciences
Subjects:
Online Access: http://tao.cgu.org.tw/images/attachments/v235p605.pdf
Description
Summary:This paper describes details of an automatic matrix decomposition approach for a reaction-based stream water quality model. The method yields a set of equilibrium equations, a set of kinetic-variable transport equations involving kinetic reactions only, and a set of component transport equations involving no reactions. Partial decomposition of the system of water quality constituent transport equations is performed via Gauss-Jordan column reduction of the reaction network by pivoting on equilibrium reactions to decouple equilibrium and kinetic reactions. This approach minimizes the number of partial differential advective-dispersive transport equations and enables robust numerical integration. Complete matrix decomposition by further pivoting on linearly independent kinetic reactions allows some rate equations to be formulated individually and explicitly enforces conservation of component species when component transport equations are solved. The methodology is demonstrated for a case study involving eutrophication reactions in the Des Moines River in Iowa, USA and for two hypothetical examples to illustrate the ability of the model to simulate sediment and chemical transport with both mobile and immobile water phases and with complex reaction networks involving both kinetic and equilibrium reactions.
ISSN:1017-0839
2311-7680