An Acute Stress Model in New Zealand White Rabbits Exhibits Altered Immune Response to Infection with West Nile Virus
The immune competence of an individual is a major determinant of morbidity in West Nile virus (WNV)-infection. Previously, we showed that immunocompetent New Zealand White rabbits (NZWRs; <i>Oryctolagus cuniculus</i>) are phenotypically resistant to WNV-induced disease, thus presenting a...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-10-01
|
Series: | Pathogens |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-0817/8/4/195 |
id |
doaj-b3819cf2ace64d81a176c0854547b421 |
---|---|
record_format |
Article |
spelling |
doaj-b3819cf2ace64d81a176c0854547b4212020-11-25T01:56:43ZengMDPI AGPathogens2076-08172019-10-018419510.3390/pathogens8040195pathogens8040195An Acute Stress Model in New Zealand White Rabbits Exhibits Altered Immune Response to Infection with West Nile VirusWilly W. Suen0Mitchell Imoda1Albert W. Thomas2Nur N.B.M. Nasir3Nawaporn Tearnsing4Wenqi Wang5Helle Bielefeldt-Ohmann6School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, AustraliaSchool of Veterinary Science, The University of Queensland, Gatton, Qld 4343, AustraliaSchool of Veterinary Science, The University of Queensland, Gatton, Qld 4343, AustraliaSchool of Biomedical Sciences, The University of Queensland, St Lucia, Qld 4072, AustraliaSchool of Veterinary Science, The University of Queensland, Gatton, Qld 4343, AustraliaSchool of Veterinary Science, The University of Queensland, Gatton, Qld 4343, AustraliaSchool of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, AustraliaThe immune competence of an individual is a major determinant of morbidity in West Nile virus (WNV)-infection. Previously, we showed that immunocompetent New Zealand White rabbits (NZWRs; <i>Oryctolagus cuniculus</i>) are phenotypically resistant to WNV-induced disease, thus presenting a suitable model for study of virus-control mechanisms. The current study used corticosteroid-treated NZWRs to model acute “stress”-related immunosuppression. Maximal effects on immune parameters were observed on day 3 post dexamethasone-treatment (pdt). However, contrary to our hypothesis, intradermal WNV challenge at this time pdt produced significantly lower viremia 1 day post-infection (dpi) compared to untreated controls, suggestive of changes to antiviral control mechanisms. To examine this further, RNAseq was performed on RNA extracted from draining lymph node—the first site of virus replication and immune detection. Unaffected by dexamethasone-treatment, an early antiviral response, primarily via interferon (IFN)-I, and induction of a range of known and novel IFN-stimulated genes, was observed. However, treatment was associated with expression of a different repertoire of IFN-α-21-like and IFN-ω-1-like subtypes on 1 dpi, which may have driven the different chemokine response on 3 dpi. Ongoing expression of Toll-like receptor-3 and transmembrane protein-173/STING likely contributed to signaling of the treatment-independent IFN-I response. Two novel genes (putative HERC6 and IFIT1B genes), and the SLC16A5 gene were also highlighted as important component of the transcriptomic response. Therefore, the current study shows that rabbits are capable of restricting WNV replication and dissemination by known and novel robust antiviral mechanisms despite environmental challenges such as stress.https://www.mdpi.com/2076-0817/8/4/195west nile virusimmunosuppressiondexamethasonerabbit modeltranscriptomeantiviral response |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Willy W. Suen Mitchell Imoda Albert W. Thomas Nur N.B.M. Nasir Nawaporn Tearnsing Wenqi Wang Helle Bielefeldt-Ohmann |
spellingShingle |
Willy W. Suen Mitchell Imoda Albert W. Thomas Nur N.B.M. Nasir Nawaporn Tearnsing Wenqi Wang Helle Bielefeldt-Ohmann An Acute Stress Model in New Zealand White Rabbits Exhibits Altered Immune Response to Infection with West Nile Virus Pathogens west nile virus immunosuppression dexamethasone rabbit model transcriptome antiviral response |
author_facet |
Willy W. Suen Mitchell Imoda Albert W. Thomas Nur N.B.M. Nasir Nawaporn Tearnsing Wenqi Wang Helle Bielefeldt-Ohmann |
author_sort |
Willy W. Suen |
title |
An Acute Stress Model in New Zealand White Rabbits Exhibits Altered Immune Response to Infection with West Nile Virus |
title_short |
An Acute Stress Model in New Zealand White Rabbits Exhibits Altered Immune Response to Infection with West Nile Virus |
title_full |
An Acute Stress Model in New Zealand White Rabbits Exhibits Altered Immune Response to Infection with West Nile Virus |
title_fullStr |
An Acute Stress Model in New Zealand White Rabbits Exhibits Altered Immune Response to Infection with West Nile Virus |
title_full_unstemmed |
An Acute Stress Model in New Zealand White Rabbits Exhibits Altered Immune Response to Infection with West Nile Virus |
title_sort |
acute stress model in new zealand white rabbits exhibits altered immune response to infection with west nile virus |
publisher |
MDPI AG |
series |
Pathogens |
issn |
2076-0817 |
publishDate |
2019-10-01 |
description |
The immune competence of an individual is a major determinant of morbidity in West Nile virus (WNV)-infection. Previously, we showed that immunocompetent New Zealand White rabbits (NZWRs; <i>Oryctolagus cuniculus</i>) are phenotypically resistant to WNV-induced disease, thus presenting a suitable model for study of virus-control mechanisms. The current study used corticosteroid-treated NZWRs to model acute “stress”-related immunosuppression. Maximal effects on immune parameters were observed on day 3 post dexamethasone-treatment (pdt). However, contrary to our hypothesis, intradermal WNV challenge at this time pdt produced significantly lower viremia 1 day post-infection (dpi) compared to untreated controls, suggestive of changes to antiviral control mechanisms. To examine this further, RNAseq was performed on RNA extracted from draining lymph node—the first site of virus replication and immune detection. Unaffected by dexamethasone-treatment, an early antiviral response, primarily via interferon (IFN)-I, and induction of a range of known and novel IFN-stimulated genes, was observed. However, treatment was associated with expression of a different repertoire of IFN-α-21-like and IFN-ω-1-like subtypes on 1 dpi, which may have driven the different chemokine response on 3 dpi. Ongoing expression of Toll-like receptor-3 and transmembrane protein-173/STING likely contributed to signaling of the treatment-independent IFN-I response. Two novel genes (putative HERC6 and IFIT1B genes), and the SLC16A5 gene were also highlighted as important component of the transcriptomic response. Therefore, the current study shows that rabbits are capable of restricting WNV replication and dissemination by known and novel robust antiviral mechanisms despite environmental challenges such as stress. |
topic |
west nile virus immunosuppression dexamethasone rabbit model transcriptome antiviral response |
url |
https://www.mdpi.com/2076-0817/8/4/195 |
work_keys_str_mv |
AT willywsuen anacutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT mitchellimoda anacutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT albertwthomas anacutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT nurnbmnasir anacutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT nawaporntearnsing anacutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT wenqiwang anacutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT hellebielefeldtohmann anacutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT willywsuen acutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT mitchellimoda acutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT albertwthomas acutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT nurnbmnasir acutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT nawaporntearnsing acutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT wenqiwang acutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus AT hellebielefeldtohmann acutestressmodelinnewzealandwhiterabbitsexhibitsalteredimmuneresponsetoinfectionwithwestnilevirus |
_version_ |
1724978320955670528 |