A Sub-Regional Calibration Method That Can Accomplish Error Compensation for Photoelectric Scanning Measurement Network

In the measurement process of photoelectric scanning measurement network, the laser surface edge area has lower measurement accuracy than the middle area due to the geometrical distortions of the laser surface of the transmitter. This paper presents a sub-regional calibration method that can accompl...

Full description

Bibliographic Details
Main Authors: Zhenyu Zhang, Yongjie Ren, Linghui Yang, Jiarui Lin, Shendong Shi, Jigui Zhu
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/9/2117
Description
Summary:In the measurement process of photoelectric scanning measurement network, the laser surface edge area has lower measurement accuracy than the middle area due to the geometrical distortions of the laser surface of the transmitter. This paper presents a sub-regional calibration method that can accomplish error compensation for the measurement system. Unlike the camera sub-regional calibration, the regional division and identification of the laser surface are more difficult. In this paper, the pitch angle in the transmitter coordinate frame of the spatial point was used as the basis for the division and identification of the laser surface. In the calibration process, the laser surface of the transmitter was divided into different regions and each region was calibrated independently, so that an intrinsic parameters database containing the intrinsic parameters of different regions could be established. Based on the database, the region identification and error compensation algorithm were designed, and comparison experiments were carried out. With the novel calibration method, the measurement accuracy of the system had an obvious upgrade, especially at the edges of the laser surface within a certain measurement area, which could enlarge the effective measurement area of the transmitter and would broaden and deepen the application fields of photoelectric scanning measurement network.
ISSN:1424-8220