Exact Solutions for a Generalized KdV-MKdV Equation with Variable Coefficients
By using solutions of an ordinary differential equation, an auxiliary equation method is described to seek exact solutions of variable-coefficient KdV-MKdV equation. As a result, more new exact nontravelling solutions, which include soliton solutions, combined soliton solutions, triangular periodic...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2016/5274243 |
Summary: | By using solutions of an ordinary differential equation, an auxiliary equation method is described to seek exact solutions of variable-coefficient KdV-MKdV equation. As a result, more new exact nontravelling solutions, which include soliton solutions, combined soliton solutions, triangular periodic solutions, Jacobi elliptic function solutions, and combined Jacobi elliptic function solutions, for the KdV-MKdV equation are obtained. It is shown that the considered method provides a very effective, convenient, and powerful mathematical tool for solving many other nonlinear partial differential equations with variable coefficients in mathematical physics. |
---|---|
ISSN: | 1024-123X 1563-5147 |