Computational Analysis of KCS Model with an Equalizing Duct
In order to minimize carbon emissions and greenhouse gas, the Energy Efficiency Design Index (EEDI) has become a major factor to be considered in recent years in a ship’s design and operation phases. Energy-Saving Devices (ESDs) improve the EEDI of a vessel and make them environmentally friendly. In...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Korean Society of Ocean Engineers
2021-08-01
|
Series: | 한국해양공학회지 |
Subjects: | |
Online Access: | https://www.joet.org/journal/view.php?doi=10.26748/KSOE.2021.015 |
Summary: | In order to minimize carbon emissions and greenhouse gas, the Energy Efficiency Design Index (EEDI) has become a major factor to be considered in recent years in a ship’s design and operation phases. Energy-Saving Devices (ESDs) improve the EEDI of a vessel and make them environmentally friendly. In this research, the performance of an equalizing duct-type ESD installed upstream of a Korea Research Institute of Ships & Ocean Engineering (KRISO) Container Ship (KCS) model’s propeller was investigated by computational fluid dynamics (CFD). Open-source CFD libraries, OpenFOAM, were used for computational analysis of the KCS with and without the ESD to verify the performance improvement. The flow field near the stern region and propulsive coefficients were considered for comparison. The results showed a considerable improvement when an ESD was used on the model. Using different sizes of the duct, the performance of the ESD was also compared. It was observed that with an increased duct size, the propulsive performance was improved. |
---|---|
ISSN: | 1225-0767 2287-6715 |