Investigation of Conductive Mechanism of Amorphous IGO Resistive Random-Access Memory with Different Top Electrode Metal

In this paper, resistive random-access memory (RRAM) with InGaO (IGO) as an active layer was fabricated by radio-frequency (RF) sputtering system and the resistive switching mechanism with the different top electrode (TE) of Pt, Ti, and Al were investigated. The Pt/IGO/Pt/Ti RRAM exhibits typical bi...

Full description

Bibliographic Details
Main Authors: Wei-Lun Huang, Yong-Zhe Lin, Sheng-Po Chang, Shoou-Jinn Chang
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/10/5/504
Description
Summary:In this paper, resistive random-access memory (RRAM) with InGaO (IGO) as an active layer was fabricated by radio-frequency (RF) sputtering system and the resistive switching mechanism with the different top electrode (TE) of Pt, Ti, and Al were investigated. The Pt/IGO/Pt/Ti RRAM exhibits typical bipolar resistive switching features with an average set voltage of 1.73 V, average reset voltage of −0.60 V, average high resistance state (HRS) of 54,954.09 Ω, and the average low resistance state (LRS) of 64.97 Ω, respectively. Ti and Al were substituted for Pt as TE, and the conductive mechanism was different from TE of Pt. When Ti and Al were deposited onto the switching layer, both TE of Ti and Al will form oxidation of TiO<sub>x</sub> and AlO<sub>x</sub> because of their high activity to oxygen. The oxidation will have different effects on the forming of filaments, which may further affect the RRAM performance. The details of different mechanisms caused by different TE will be discussed. In brief, IGO is an excellent candidate for the RRAM device and with the aids of TiO<sub>x</sub>, the set voltage, and reset voltage, HRS and LRS become much more stable.
ISSN:2079-6412