DL-IDS: Extracting Features Using CNN-LSTM Hybrid Network for Intrusion Detection System
Many studies utilized machine learning schemes to improve network intrusion detection systems recently. Most of the research is based on manually extracted features, but this approach not only requires a lot of labor costs but also loses a lot of information in the original data, resulting in low ju...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2020-01-01
|
Series: | Security and Communication Networks |
Online Access: | http://dx.doi.org/10.1155/2020/8890306 |
Summary: | Many studies utilized machine learning schemes to improve network intrusion detection systems recently. Most of the research is based on manually extracted features, but this approach not only requires a lot of labor costs but also loses a lot of information in the original data, resulting in low judgment accuracy and cannot be deployed in actual situations. This paper develops a DL-IDS (deep learning-based intrusion detection system), which uses the hybrid network of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) to extract the spatial and temporal features of network traffic data and to provide a better intrusion detection system. To reduce the influence of an unbalanced number of samples of different attack types in model training samples on model performance, DL-IDS used a category weight optimization method to improve the robustness. Finally, DL-IDS is tested on CICIDS2017, a reliable intrusion detection dataset that covers all the common, updated intrusions and cyberattacks. In the multiclassification test, DL-IDS reached 98.67% in overall accuracy, and the accuracy of each attack type was above 99.50%. |
---|---|
ISSN: | 1939-0114 1939-0122 |