Summary: | Precipitable water vapor (PWV) is a meteorological variable that influences the main processes that occur in the atmosphere. It is not a homogeneous variable, but varies both temporally and spatially according to local conditions. This study analyzes the spatial and temporal variability of the PWV in Peru using MODIS satellite data (MOD05/MYD05 products) during the period 2000 to 2017. MODIS-derived PWV values were complemented with ERA-Interim reanalysis data to take the study period back to 1979. PWV values extracted from MODIS and ERA-Interim were compared against in situ values obtained from five radiosonde stations between the years of 2003 and 2016 (non-continuous data). The study was performed over nine sub-regions of the Peruvian territory: coastal, highland, and jungle sub-regions, which in turn were classified into northern, central and southern regions. The analysis of spatial variability was performed using monthly semivariograms and influencing parameters such as sill and range, whereas the temporal variation was examined by time series of monthly, seasonal, and multi-annual means. The Mann-Kendall test was also applied to determine the presence of trends. The spatial analysis evidenced the heterogeneity of the PWV over the study region, and in most of the sub-regions there was directional variability during the austral summer and austral winter, with the Northeast (NE) and East (E) directions having the greatest spatial variability. The omnidirectional analysis of the sill and range showed that there was a high spatial variability of PWV mainly over the northern and southern jungle, even exceeding the limit area of these sub-regions. The temporal analysis shows that this variability occurs more in the north and center of the jungle and in the north coast, where the content of PWV is higher in relation to other regions, while the central and southern highlands have the lowest values. In addition, the trend test determines that there is a slight increase in PWV for the coast and jungle regions of Peru. Validation analysis using the radiosonde data showed a similar performance of both datasets (MODIS and ERA), with better results for the case of the MODIS product (RMSE < 0.6 cm and R<sup>2</sup> = 0.71).
|