Porewater <i>δ</i><sup>13</sup>C<sub>DOC</sub> indicates variable extent of degradation in different talik layers of coastal Alaskan thermokarst lakes
<p>Thermokarst lakes play an important role in permafrost environments by warming and insulating the underlying permafrost. As a result, thaw bulbs of unfrozen ground (taliks) are formed. Since these taliks remain perennially thawed, they are zones of increased degradation where microbial acti...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-04-01
|
Series: | Biogeosciences |
Online Access: | https://bg.copernicus.org/articles/18/2241/2021/bg-18-2241-2021.pdf |
Summary: | <p>Thermokarst lakes play an important role in permafrost
environments by warming and insulating the underlying permafrost. As a
result, thaw bulbs of unfrozen ground (taliks) are formed. Since these
taliks remain perennially thawed, they are zones of increased degradation
where microbial activity and geochemical processes can lead to increased
greenhouse gas emissions from thermokarst lakes. It is not well understood
though to what extent the organic carbon (OC) in different talik layers
below thermokarst lakes is affected by degradation. Here, we present two
transects of short sediment cores from two thermokarst lakes on the Arctic
Coastal Plain of Alaska. Based on their physiochemical properties, two main
talik layers were identified. A “lake sediment” is identified at the top with low density,
sand, and silicon content but high porosity. Underneath, a “taberite” (former
permafrost soil) of high sediment density and rich in sand but with lower
porosity is identified. Loss on ignition (LOI) measurements show that the organic matter
(OM) content in the lake sediment of <span class="inline-formula">28±3</span> wt % (<span class="inline-formula">1<i>σ</i></span>, <span class="inline-formula"><i>n</i>=23</span>) is considerably higher than in the underlying taberite soil with <span class="inline-formula">8±6</span> wt % (<span class="inline-formula">1<i>σ</i></span>, <span class="inline-formula"><i>n</i>=35</span>), but dissolved organic carbon (DOC)
leaches from both layers in high concentrations: <span class="inline-formula">40±14</span> mg L<span class="inline-formula"><sup>−1</sup></span>
(<span class="inline-formula">1<i>σ</i></span>, <span class="inline-formula"><i>n</i>=22</span>) and <span class="inline-formula">60±14</span> mg L<span class="inline-formula"><sup>−1</sup></span> (<span class="inline-formula">1<i>σ</i></span>, <span class="inline-formula"><i>n</i>=20</span>). Stable carbon isotope analysis of the porewater DOC (<span class="inline-formula"><i>δ</i><sup>13</sup></span>C<span class="inline-formula"><sub>DOC</sub></span>) showed a relatively wide range of values from <span class="inline-formula">−30.74</span> ‰ to <span class="inline-formula">−27.11</span> ‰ with a mean of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">28.57</mn><mo>±</mo><mn mathvariant="normal">0.92</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="cc170526505501bc8c89012fee9729bb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-2241-2021-ie00001.svg" width="70pt" height="10pt" src="bg-18-2241-2021-ie00001.png"/></svg:svg></span></span> ‰ (<span class="inline-formula">1<i>σ</i></span>, <span class="inline-formula"><i>n</i>=21</span>) in the lake
sediment, compared to a relatively narrow range of <span class="inline-formula">−27.58</span> ‰ to <span class="inline-formula">−26.76</span> ‰ with a mean of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">27.59</mn><mo>±</mo><mn mathvariant="normal">0.83</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="2725490854322eebaa3bb08f0a7a4852"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-2241-2021-ie00002.svg" width="70pt" height="10pt" src="bg-18-2241-2021-ie00002.png"/></svg:svg></span></span> ‰ (<span class="inline-formula">1<i>σ</i></span>, <span class="inline-formula"><i>n</i>=21</span>) in the taberite
soil (one outlier at <span class="inline-formula">−30.74</span> ‰). The opposite was
observed in the soil organic carbon (SOC), with a narrow <span class="inline-formula"><i>δ</i><sup>13</sup></span>C<span class="inline-formula"><sub>SOC</sub></span> range from <span class="inline-formula">−29.15</span> ‰ to <span class="inline-formula">−27.72</span> ‰ in the lake sediment (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M36" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">28.56</mn><mo>±</mo><mn mathvariant="normal">0.36</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="527ef9eb01d30114e7d3c9d9f23fd36c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-2241-2021-ie00003.svg" width="70pt" height="10pt" src="bg-18-2241-2021-ie00003.png"/></svg:svg></span></span> ‰, <span class="inline-formula">1<i>σ</i></span>, <span class="inline-formula"><i>n</i>=23</span>) in comparison to a wider <span class="inline-formula"><i>δ</i><sup>13</sup></span>C<span class="inline-formula"><sub>SOC</sub></span> range from <span class="inline-formula">−27.72</span> ‰ to <span class="inline-formula">−25.55</span> ‰ in the underlying taberite soil (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M43" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">26.84</mn><mo>±</mo><mn mathvariant="normal">0.81</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c52a3b77fdd7a4d588069a90fa906142"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-2241-2021-ie00004.svg" width="70pt" height="10pt" src="bg-18-2241-2021-ie00004.png"/></svg:svg></span></span> ‰, <span class="inline-formula">1<i>σ</i></span>, <span class="inline-formula"><i>n</i>=21</span>). The wider range of porewater
<span class="inline-formula"><i>δ</i><sup>13</sup></span>C<span class="inline-formula"><sub>DOC</sub></span> values in the lake sediment compared to the
taberite soil, but narrower range of comparative <span class="inline-formula"><i>δ</i><sup>13</sup></span>C<span class="inline-formula"><sub>SOC</sub></span>, along with the <span class="inline-formula"><i>δ</i><sup>13</sup></span>C-shift from <span class="inline-formula"><i>δ</i><sup>13</sup></span>C<span class="inline-formula"><sub>SOC</sub></span> to <span class="inline-formula"><i>δ</i><sup>13</sup></span>C<span class="inline-formula"><sub>DOC</sub></span> indicates increased
stable carbon isotope fractionation due to ongoing processes in the lake
sediment. Increased degradation of the OC in the lake sediment relative
to the underlying taberite is the most likely explanation for these
differences in <span class="inline-formula"><i>δ</i><sup>13</sup></span>C<span class="inline-formula"><sub>DOC</sub></span> values. As thermokarst lakes can
be important greenhouse gas sources in the Arctic, it is important to better
understand the degree of degradation in the individual talik layers as an
indicator for their potential in greenhouse gas release, especially, as
predicted warming of the Arctic in the coming decades will likely increase
the number and extent (horizontal and vertical) of thermokarst lake taliks.</p> |
---|---|
ISSN: | 1726-4170 1726-4189 |