Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approach

<p>Lithium (Li) isotopes in marine carbonates have considerable potential as a proxy to constrain past changes in silicate weathering fluxes and improve our understanding of Earth's climate. To date the majority of Li isotope studies on marine carbonates have focussed on calcium carbonate...

Full description

Bibliographic Details
Main Authors: H. L. Taylor, I. J. K. Duivestein, J. Farkas, M. Dietzel, A. Dosseto
Format: Article
Language:English
Published: Copernicus Publications 2019-04-01
Series:Climate of the Past
Online Access:https://www.clim-past.net/15/635/2019/cp-15-635-2019.pdf
id doaj-b2e04120a8374104a76156f2b9cf9cd4
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author H. L. Taylor
I. J. K. Duivestein
J. Farkas
J. Farkas
M. Dietzel
A. Dosseto
spellingShingle H. L. Taylor
I. J. K. Duivestein
J. Farkas
J. Farkas
M. Dietzel
A. Dosseto
Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approach
Climate of the Past
author_facet H. L. Taylor
I. J. K. Duivestein
J. Farkas
J. Farkas
M. Dietzel
A. Dosseto
author_sort H. L. Taylor
title Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approach
title_short Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approach
title_full Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approach
title_fullStr Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approach
title_full_unstemmed Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approach
title_sort technical note: lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approach
publisher Copernicus Publications
series Climate of the Past
issn 1814-9324
1814-9332
publishDate 2019-04-01
description <p>Lithium (Li) isotopes in marine carbonates have considerable potential as a proxy to constrain past changes in silicate weathering fluxes and improve our understanding of Earth's climate. To date the majority of Li isotope studies on marine carbonates have focussed on calcium carbonates. The determination of the Li isotope fractionation between dolomite and a dolomitizing fluid would allow us to extend investigations to deep times (i.e. Precambrian) when dolostones were the most abundant marine carbonate archives. Dolostones often contain a significant proportion of detrital silicate material, which dominates the Li budget; thus, pretreatment needs to be designed so that only the isotope composition of the carbonate-associated Li is measured. This study aims to serve two main goals: (1) to determine the Li isotope fractionation between Ca–Mg carbonates and solution, and (2) to develop a method for leaching the carbonate-associated Li out of dolostone while not affecting the Li contained within the detrital portion of the rock. We synthesized Ca–Mg carbonates at high temperatures (150 to 220&thinsp;<span class="inline-formula"><sup>∘</sup></span>C) and measured the Li isotope composition (<span class="inline-formula"><i>δ</i><sup>7</sup>Li</span>) of the precipitated solids and their respective reactive solutions. The relationship of the Li isotope fractionation factor with temperature was obtained: </p><div class="disp-formula" content-type="numbered" specific-use="align"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="block" overflow="scroll" dspmath="mathml"><mtable columnalign="left" displaystyle="true"><mtr><mtd><mstyle displaystyle="true" class="stylechange"/></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"/><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">3</mn></msup><mi>ln⁡</mi><msub><mi mathvariant="italic">α</mi><mtext>prec-sol</mtext></msub><mo>=</mo><mo>-</mo><mfenced close=")" open="("><mrow><mo>(</mo><mn mathvariant="normal">2.56</mn><mo>±</mo><mn mathvariant="normal">0.27</mn><mo>)</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">6</mn></msup></mrow></mfenced></mrow></mtd></mtr><mlabeledtr id="Ch1.E1"><mtd><mtext>(1)</mtext></mtd><mtd><mstyle class="stylechange" displaystyle="true"/></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"/><mspace width="1em" linebreak="nobreak"/><mo>/</mo><msup><mi>T</mi><mn mathvariant="normal">2</mn></msup><mo>+</mo><mo>(</mo><mn mathvariant="normal">5.8</mn><mo>±</mo><mn mathvariant="normal">1.3</mn><mo>)</mo></mrow></mtd></mlabeledtr></mtable></math><div><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="217pt" height="38pt" class="svg-formula" dspmath="mathimg" md5hash="db391f1285cb60e0674543b54782e465"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-15-635-2019-e_1.svg" width="217pt" height="38pt" src="cp-15-635-2019-e_1.png"/></svg:svg></div></div> <p>Competitive nucleation and growth between dolomite and magnesite were observed during the experiments; however, there was no notable effect of their relative proportion on the apparent Li isotope fractionation. We found that Li isotope fractionation between the precipitated solid and solution is higher for Ca–Mg carbonates than for Ca carbonates. If the temperature of a precipitating solution is known or can be estimated independently, the above equation could be used in conjunction with the Li isotope composition of dolostones to derive the composition of the solution and hence make inferences about the past Li cycle. In addition, we also conducted leaching experiments on a Neoproterozoic dolostone and a Holocene coral. Results show that leaching with 0.05&thinsp;M hydrochloric acid (HCl) or 0.5&thinsp;% acetic acid (HAc) at room temperature for 60&thinsp;min releases Li from the carbonate fraction without a significant contribution of Li from the siliciclastic detrital component. These experimental and analytical developments provide a basis for the use of Li isotopes in dolostones as a palaeo-environmental proxy, which will contribute to further advance our understanding of the evolution of Earth's surface environments.</p>
url https://www.clim-past.net/15/635/2019/cp-15-635-2019.pdf
work_keys_str_mv AT hltaylor technicalnotelithiumisotopesindolostoneasapalaeoenvironmentalproxyanexperimentalapproach
AT ijkduivestein technicalnotelithiumisotopesindolostoneasapalaeoenvironmentalproxyanexperimentalapproach
AT jfarkas technicalnotelithiumisotopesindolostoneasapalaeoenvironmentalproxyanexperimentalapproach
AT jfarkas technicalnotelithiumisotopesindolostoneasapalaeoenvironmentalproxyanexperimentalapproach
AT mdietzel technicalnotelithiumisotopesindolostoneasapalaeoenvironmentalproxyanexperimentalapproach
AT adosseto technicalnotelithiumisotopesindolostoneasapalaeoenvironmentalproxyanexperimentalapproach
_version_ 1725615503345451008
spelling doaj-b2e04120a8374104a76156f2b9cf9cd42020-11-24T23:08:03ZengCopernicus PublicationsClimate of the Past1814-93241814-93322019-04-011563564610.5194/cp-15-635-2019Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approachH. L. Taylor0I. J. K. Duivestein1J. Farkas2J. Farkas3M. Dietzel4A. Dosseto5Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, AustraliaInstitute of Applied Geosciences, Graz University of Technology, Graz, AustriaDepartment of Earth Sciences, University of Adelaide, Adelaide, SA, AustraliaDepartment of Environmental Geosciences, Czech University of Life Sciences, Prague, Czech RepublicInstitute of Applied Geosciences, Graz University of Technology, Graz, AustriaWollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia<p>Lithium (Li) isotopes in marine carbonates have considerable potential as a proxy to constrain past changes in silicate weathering fluxes and improve our understanding of Earth's climate. To date the majority of Li isotope studies on marine carbonates have focussed on calcium carbonates. The determination of the Li isotope fractionation between dolomite and a dolomitizing fluid would allow us to extend investigations to deep times (i.e. Precambrian) when dolostones were the most abundant marine carbonate archives. Dolostones often contain a significant proportion of detrital silicate material, which dominates the Li budget; thus, pretreatment needs to be designed so that only the isotope composition of the carbonate-associated Li is measured. This study aims to serve two main goals: (1) to determine the Li isotope fractionation between Ca–Mg carbonates and solution, and (2) to develop a method for leaching the carbonate-associated Li out of dolostone while not affecting the Li contained within the detrital portion of the rock. We synthesized Ca–Mg carbonates at high temperatures (150 to 220&thinsp;<span class="inline-formula"><sup>∘</sup></span>C) and measured the Li isotope composition (<span class="inline-formula"><i>δ</i><sup>7</sup>Li</span>) of the precipitated solids and their respective reactive solutions. The relationship of the Li isotope fractionation factor with temperature was obtained: </p><div class="disp-formula" content-type="numbered" specific-use="align"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="block" overflow="scroll" dspmath="mathml"><mtable columnalign="left" displaystyle="true"><mtr><mtd><mstyle displaystyle="true" class="stylechange"/></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"/><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">3</mn></msup><mi>ln⁡</mi><msub><mi mathvariant="italic">α</mi><mtext>prec-sol</mtext></msub><mo>=</mo><mo>-</mo><mfenced close=")" open="("><mrow><mo>(</mo><mn mathvariant="normal">2.56</mn><mo>±</mo><mn mathvariant="normal">0.27</mn><mo>)</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">6</mn></msup></mrow></mfenced></mrow></mtd></mtr><mlabeledtr id="Ch1.E1"><mtd><mtext>(1)</mtext></mtd><mtd><mstyle class="stylechange" displaystyle="true"/></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"/><mspace width="1em" linebreak="nobreak"/><mo>/</mo><msup><mi>T</mi><mn mathvariant="normal">2</mn></msup><mo>+</mo><mo>(</mo><mn mathvariant="normal">5.8</mn><mo>±</mo><mn mathvariant="normal">1.3</mn><mo>)</mo></mrow></mtd></mlabeledtr></mtable></math><div><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="217pt" height="38pt" class="svg-formula" dspmath="mathimg" md5hash="db391f1285cb60e0674543b54782e465"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-15-635-2019-e_1.svg" width="217pt" height="38pt" src="cp-15-635-2019-e_1.png"/></svg:svg></div></div> <p>Competitive nucleation and growth between dolomite and magnesite were observed during the experiments; however, there was no notable effect of their relative proportion on the apparent Li isotope fractionation. We found that Li isotope fractionation between the precipitated solid and solution is higher for Ca–Mg carbonates than for Ca carbonates. If the temperature of a precipitating solution is known or can be estimated independently, the above equation could be used in conjunction with the Li isotope composition of dolostones to derive the composition of the solution and hence make inferences about the past Li cycle. In addition, we also conducted leaching experiments on a Neoproterozoic dolostone and a Holocene coral. Results show that leaching with 0.05&thinsp;M hydrochloric acid (HCl) or 0.5&thinsp;% acetic acid (HAc) at room temperature for 60&thinsp;min releases Li from the carbonate fraction without a significant contribution of Li from the siliciclastic detrital component. These experimental and analytical developments provide a basis for the use of Li isotopes in dolostones as a palaeo-environmental proxy, which will contribute to further advance our understanding of the evolution of Earth's surface environments.</p>https://www.clim-past.net/15/635/2019/cp-15-635-2019.pdf