Fermion masses, mass-mixing and the almost commutative geometry of the Standard Model
Abstract We investigate whether the Standard Model, within the accuracy of current experimental measurements, satisfies the regularity in the form of Hodge duality condition introduced and studied in [9]. We show that the neutrino and quark mass-mixing and the difference of fermion masses are necess...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-02-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP02(2019)068 |
Summary: | Abstract We investigate whether the Standard Model, within the accuracy of current experimental measurements, satisfies the regularity in the form of Hodge duality condition introduced and studied in [9]. We show that the neutrino and quark mass-mixing and the difference of fermion masses are necessary for this property. We demonstrate that the current data supports this new geometric feature of the Standard Model, Hodge duality, provided that all neutrinos are massive. |
---|---|
ISSN: | 1029-8479 |