Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms
Aperiodic sparse 2D ultrasonic array configurations, including random array, log spiral array, and sunflower array, have been considered for their potential as conformable transducers able to image within a focal range of 30–80 mm, at an operating frequency of 2 MHz. Optimisation of the imaging perf...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/20/18/5370 |
id |
doaj-b2cced9137354afcbf1c3355fe4584de |
---|---|
record_format |
Article |
spelling |
doaj-b2cced9137354afcbf1c3355fe4584de2020-11-25T02:31:23ZengMDPI AGSensors1424-82202020-09-01205370537010.3390/s20185370Design of 2D Sparse Array Transducers for Anomaly Detection in Medical PhantomsXiaotong Li0Anthony Gachagan1Paul Murray2Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UKDepartment of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UKDepartment of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UKAperiodic sparse 2D ultrasonic array configurations, including random array, log spiral array, and sunflower array, have been considered for their potential as conformable transducers able to image within a focal range of 30–80 mm, at an operating frequency of 2 MHz. Optimisation of the imaging performance of potential array patterns has been undertaken based on their simulated far field directivity functions. Two evaluation criteria, peak sidelobe level (PSL) and integrated sidelobe ratio (ISLR), are used to access the performance of each array configuration. Subsequently, a log spiral array pattern with −19.33 dB PSL and 2.71 dB ISLR has been selected as the overall optimal design. Two prototype transducers with the selected log spiral array pattern have been fabricated and characterised, one using a fibre composite element composite array transducer (CECAT) structure, the other using a conventional 1–3 composite (C1–3) structure. The CECAT device demonstrates improved coupling coefficient (0.64 to 0.59), reduced mechanical cross-talk between neighbouring array elements (by 10 dB) and improved operational bandwidth (by 16.5%), while the C1–3 device performs better in terms of sensitivity (~50%). Image processing algorithms, such as Hough transform and morphological opening, have been implemented to automatically detect and dimension particles located within a fluid-filled tube structure, in a variety of experimental scenarios, including bespoke phantoms using tissue mimicking material. Experiments using the fabricated CECAT log spiral 2D array transducer demonstrated that this algorithmic approach was able to detect the walls of the tube structure and stationary anomalies within the tube with a precision of ~0.1 mm.https://www.mdpi.com/1424-8220/20/18/5370sparse arrayultrasonic transducerparticle detection |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xiaotong Li Anthony Gachagan Paul Murray |
spellingShingle |
Xiaotong Li Anthony Gachagan Paul Murray Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms Sensors sparse array ultrasonic transducer particle detection |
author_facet |
Xiaotong Li Anthony Gachagan Paul Murray |
author_sort |
Xiaotong Li |
title |
Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms |
title_short |
Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms |
title_full |
Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms |
title_fullStr |
Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms |
title_full_unstemmed |
Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms |
title_sort |
design of 2d sparse array transducers for anomaly detection in medical phantoms |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2020-09-01 |
description |
Aperiodic sparse 2D ultrasonic array configurations, including random array, log spiral array, and sunflower array, have been considered for their potential as conformable transducers able to image within a focal range of 30–80 mm, at an operating frequency of 2 MHz. Optimisation of the imaging performance of potential array patterns has been undertaken based on their simulated far field directivity functions. Two evaluation criteria, peak sidelobe level (PSL) and integrated sidelobe ratio (ISLR), are used to access the performance of each array configuration. Subsequently, a log spiral array pattern with −19.33 dB PSL and 2.71 dB ISLR has been selected as the overall optimal design. Two prototype transducers with the selected log spiral array pattern have been fabricated and characterised, one using a fibre composite element composite array transducer (CECAT) structure, the other using a conventional 1–3 composite (C1–3) structure. The CECAT device demonstrates improved coupling coefficient (0.64 to 0.59), reduced mechanical cross-talk between neighbouring array elements (by 10 dB) and improved operational bandwidth (by 16.5%), while the C1–3 device performs better in terms of sensitivity (~50%). Image processing algorithms, such as Hough transform and morphological opening, have been implemented to automatically detect and dimension particles located within a fluid-filled tube structure, in a variety of experimental scenarios, including bespoke phantoms using tissue mimicking material. Experiments using the fabricated CECAT log spiral 2D array transducer demonstrated that this algorithmic approach was able to detect the walls of the tube structure and stationary anomalies within the tube with a precision of ~0.1 mm. |
topic |
sparse array ultrasonic transducer particle detection |
url |
https://www.mdpi.com/1424-8220/20/18/5370 |
work_keys_str_mv |
AT xiaotongli designof2dsparsearraytransducersforanomalydetectioninmedicalphantoms AT anthonygachagan designof2dsparsearraytransducersforanomalydetectioninmedicalphantoms AT paulmurray designof2dsparsearraytransducersforanomalydetectioninmedicalphantoms |
_version_ |
1724825010560827392 |