<i>β</i>–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System

In this paper, we study a system governed by impulsive semilinear nonautonomous differential equations. We present the <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>&#8315;U...

Full description

Bibliographic Details
Main Authors: Xiaoming Wang, Muhammad Arif, Akbar Zada
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/2/231
id doaj-b2be5c0ac66f47eb87d00235852595f1
record_format Article
spelling doaj-b2be5c0ac66f47eb87d00235852595f12020-11-25T00:33:26ZengMDPI AGSymmetry2073-89942019-02-0111223110.3390/sym11020231sym11020231<i>β</i>–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive SystemXiaoming Wang0Muhammad Arif1Akbar Zada2School of Mathematics &amp; Computer Science, Shangrao Normal University, Shangrao 334001, ChinaDepartment of Mathematics, University of Peshawar, Peshawar 25000, PakistanDepartment of Mathematics, University of Peshawar, Peshawar 25000, PakistanIn this paper, we study a system governed by impulsive semilinear nonautonomous differential equations. We present the <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>&#8315;Ulam stability, <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>&#8315;Hyers&#8315;Ulam stability and <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>&#8315;Hyers&#8315;Ulam&#8315;Rassias stability for the said system on a compact interval and then extended it to an unbounded interval. We use Gr&#246;nwall type inequality and evolution family as a basic tool for our results. We present an example to demonstrate the application of the main result.https://www.mdpi.com/2073-8994/11/2/231semilinear nonautonomous systeminstantaneous impulsesmild solution<i>β</i>–Hyers–Ulam– Rassias stability
collection DOAJ
language English
format Article
sources DOAJ
author Xiaoming Wang
Muhammad Arif
Akbar Zada
spellingShingle Xiaoming Wang
Muhammad Arif
Akbar Zada
<i>β</i>–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System
Symmetry
semilinear nonautonomous system
instantaneous impulses
mild solution
<i>β</i>–Hyers–Ulam– Rassias stability
author_facet Xiaoming Wang
Muhammad Arif
Akbar Zada
author_sort Xiaoming Wang
title <i>β</i>–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System
title_short <i>β</i>–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System
title_full <i>β</i>–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System
title_fullStr <i>β</i>–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System
title_full_unstemmed <i>β</i>–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System
title_sort <i>β</i>–hyers–ulam–rassias stability of semilinear nonautonomous impulsive system
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2019-02-01
description In this paper, we study a system governed by impulsive semilinear nonautonomous differential equations. We present the <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>&#8315;Ulam stability, <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>&#8315;Hyers&#8315;Ulam stability and <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>&#8315;Hyers&#8315;Ulam&#8315;Rassias stability for the said system on a compact interval and then extended it to an unbounded interval. We use Gr&#246;nwall type inequality and evolution family as a basic tool for our results. We present an example to demonstrate the application of the main result.
topic semilinear nonautonomous system
instantaneous impulses
mild solution
<i>β</i>–Hyers–Ulam– Rassias stability
url https://www.mdpi.com/2073-8994/11/2/231
work_keys_str_mv AT xiaomingwang ibihyersulamrassiasstabilityofsemilinearnonautonomousimpulsivesystem
AT muhammadarif ibihyersulamrassiasstabilityofsemilinearnonautonomousimpulsivesystem
AT akbarzada ibihyersulamrassiasstabilityofsemilinearnonautonomousimpulsivesystem
_version_ 1725316933200379904