<i>β</i>–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System
In this paper, we study a system governed by impulsive semilinear nonautonomous differential equations. We present the <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>⁻U...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-02-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/2/231 |
Summary: | In this paper, we study a system governed by impulsive semilinear nonautonomous differential equations. We present the <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>⁻Ulam stability, <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>⁻Hyers⁻Ulam stability and <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>⁻Hyers⁻Ulam⁻Rassias stability for the said system on a compact interval and then extended it to an unbounded interval. We use Grönwall type inequality and evolution family as a basic tool for our results. We present an example to demonstrate the application of the main result. |
---|---|
ISSN: | 2073-8994 |