<i>β</i>–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System

In this paper, we study a system governed by impulsive semilinear nonautonomous differential equations. We present the <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>&#8315;U...

Full description

Bibliographic Details
Main Authors: Xiaoming Wang, Muhammad Arif, Akbar Zada
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/2/231
Description
Summary:In this paper, we study a system governed by impulsive semilinear nonautonomous differential equations. We present the <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>&#8315;Ulam stability, <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>&#8315;Hyers&#8315;Ulam stability and <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>&#8315;Hyers&#8315;Ulam&#8315;Rassias stability for the said system on a compact interval and then extended it to an unbounded interval. We use Gr&#246;nwall type inequality and evolution family as a basic tool for our results. We present an example to demonstrate the application of the main result.
ISSN:2073-8994