Simultaneous Determination of the Space-Dependent Source and the Initial Distribution in a Heat Equation by Regularizing Fourier Coefficients of the Given Measurements
We consider an inverse problem for simultaneously determining the space-dependent source and the initial distribution in heat conduction equation. First, we study the ill-posedness of the inverse problem. Then, we construct a regularization problem to approximate the originally inverse problem and o...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2018/8247584 |
Summary: | We consider an inverse problem for simultaneously determining the space-dependent source and the initial distribution in heat conduction equation. First, we study the ill-posedness of the inverse problem. Then, we construct a regularization problem to approximate the originally inverse problem and obtain the regularization solutions with their stability and convergence results. Furthermore, convergence rates of the regularized solutions are presented under a prior and a posteriori strategies for selecting regularization parameters. Results of numerical examples show that the proposed regularization method is stable and effective for the considered inverse problem. |
---|---|
ISSN: | 1687-9120 1687-9139 |