On stability of one class of optimal control problems to the domain perturbations
In this paper we study a classical Dirichlet optimal control problem for a nonlinear elliptic equation with the coefficients which we adopt as controls in <em>L</em><em>°°(</em>Ω<em>). </em>The problems of this type have no solutions in general, so we make a spec...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
DNU
2009-09-01
|
Series: | Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ |
Subjects: | |
Online Access: | http://model-dnu.dp.ua/index.php/SM/article/view/82 |
id |
doaj-b2b61cee89634713a916fe6e66eb9202 |
---|---|
record_format |
Article |
spelling |
doaj-b2b61cee89634713a916fe6e66eb92022020-11-24T22:31:30ZengDNUVìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ2312-45472415-73252009-09-01178234110.15421/14090382On stability of one class of optimal control problems to the domain perturbationsO. P. Kogut0Институт прикладного системного анализа НАН Украины и МОН УкраиныIn this paper we study a classical Dirichlet optimal control problem for a nonlinear elliptic equation with the coefficients which we adopt as controls in <em>L</em><em>°°(</em>Ω<em>). </em>The problems of this type have no solutions in general, so we make a special assumption on the coefficients of the state equation and introduce the class of so-called solenoidal controls. We study the stability of the above optimal control problem with respect to the domain perturbation. With this aim we introduce the concept of the Mosco-stability for such problems and study the variational properties of Mosco-stable problems with respect to different types of domain perturbations.http://model-dnu.dp.ua/index.php/SM/article/view/82збурення областіМоско-збіжність просторів Соболевакерування в коефіцієнтахзадача Діріхлеумови стійкості |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
O. P. Kogut |
spellingShingle |
O. P. Kogut On stability of one class of optimal control problems to the domain perturbations Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ збурення області Моско-збіжність просторів Соболева керування в коефіцієнтах задача Діріхле умови стійкості |
author_facet |
O. P. Kogut |
author_sort |
O. P. Kogut |
title |
On stability of one class of optimal control problems to the domain perturbations |
title_short |
On stability of one class of optimal control problems to the domain perturbations |
title_full |
On stability of one class of optimal control problems to the domain perturbations |
title_fullStr |
On stability of one class of optimal control problems to the domain perturbations |
title_full_unstemmed |
On stability of one class of optimal control problems to the domain perturbations |
title_sort |
on stability of one class of optimal control problems to the domain perturbations |
publisher |
DNU |
series |
Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Modelûvannâ |
issn |
2312-4547 2415-7325 |
publishDate |
2009-09-01 |
description |
In this paper we study a classical Dirichlet optimal control problem for a nonlinear elliptic equation with the coefficients which we adopt as controls in <em>L</em><em>°°(</em>Ω<em>). </em>The problems of this type have no solutions in general, so we make a special assumption on the coefficients of the state equation and introduce the class of so-called solenoidal controls. We study the stability of the above optimal control problem with respect to the domain perturbation. With this aim we introduce the concept of the Mosco-stability for such problems and study the variational properties of Mosco-stable problems with respect to different types of domain perturbations. |
topic |
збурення області Моско-збіжність просторів Соболева керування в коефіцієнтах задача Діріхле умови стійкості |
url |
http://model-dnu.dp.ua/index.php/SM/article/view/82 |
work_keys_str_mv |
AT opkogut onstabilityofoneclassofoptimalcontrolproblemstothedomainperturbations |
_version_ |
1725736868060856320 |