Taylor's Expansion Revisited: A General Formula for the Remainder

We give a new approach to Taylor's remainder formula, via a generalization of Cauchy's generalized mean value theorem, which allows us to include the well-known Schölomilch, Lebesgue, Cauchy, and the Euler classic types, as particular cases.

Bibliographic Details
Main Authors: José Juan Rodríguez Cano, Enrique de Amo
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2012/645736
id doaj-b2a97d5dde9f4fe7b284be5f4df13139
record_format Article
spelling doaj-b2a97d5dde9f4fe7b284be5f4df131392020-11-24T22:32:25ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252012-01-01201210.1155/2012/645736645736Taylor's Expansion Revisited: A General Formula for the RemainderJosé Juan Rodríguez Cano0Enrique de Amo1Department of Algebra and Mathematical Analysis, University of Almería, Almería, 04120 Andalucía, SpainDepartment of Algebra and Mathematical Analysis, University of Almería, Almería, 04120 Andalucía, SpainWe give a new approach to Taylor's remainder formula, via a generalization of Cauchy's generalized mean value theorem, which allows us to include the well-known Schölomilch, Lebesgue, Cauchy, and the Euler classic types, as particular cases.http://dx.doi.org/10.1155/2012/645736
collection DOAJ
language English
format Article
sources DOAJ
author José Juan Rodríguez Cano
Enrique de Amo
spellingShingle José Juan Rodríguez Cano
Enrique de Amo
Taylor's Expansion Revisited: A General Formula for the Remainder
International Journal of Mathematics and Mathematical Sciences
author_facet José Juan Rodríguez Cano
Enrique de Amo
author_sort José Juan Rodríguez Cano
title Taylor's Expansion Revisited: A General Formula for the Remainder
title_short Taylor's Expansion Revisited: A General Formula for the Remainder
title_full Taylor's Expansion Revisited: A General Formula for the Remainder
title_fullStr Taylor's Expansion Revisited: A General Formula for the Remainder
title_full_unstemmed Taylor's Expansion Revisited: A General Formula for the Remainder
title_sort taylor's expansion revisited: a general formula for the remainder
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2012-01-01
description We give a new approach to Taylor's remainder formula, via a generalization of Cauchy's generalized mean value theorem, which allows us to include the well-known Schölomilch, Lebesgue, Cauchy, and the Euler classic types, as particular cases.
url http://dx.doi.org/10.1155/2012/645736
work_keys_str_mv AT josejuanrodriguezcano taylorsexpansionrevisitedageneralformulafortheremainder
AT enriquedeamo taylorsexpansionrevisitedageneralformulafortheremainder
_version_ 1725734115619110912