Array Pattern Synthesis Using a Hybrid Differential Evolution and Analytic Algorithm

In this paper, a hybrid differential evolution and weight total least squares method (HDE-WTLSM) is proposed for antenna array pattern synthesis. A variable diagonal weight matrix is introduced in total least squares method. Then, the weight matrix is optimized by differential evolution (DE) algorit...

Full description

Bibliographic Details
Main Authors: Rui Li, Le Xu, Xiaoqun Chen, Yong Yang, Xiaoning Yang, Jianxiao Wang, Yuanming Cai, Feng Wei
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/18/2227
Description
Summary:In this paper, a hybrid differential evolution and weight total least squares method (HDE-WTLSM) is proposed for antenna array pattern synthesis. A variable diagonal weight matrix is introduced in total least squares method. Then, the weight matrix is optimized by differential evolution (DE) algorithm to control the differences of the desired level and the obtained level in different directions. This algorithm combines the advantages of evolutionary algorithm and numerical algorithm, so it has a wider application range and faster convergence speed. To compare HDE-WTLSM with DE algorithm and typical numerical algorithms, these methods are applied to a linear antenna array and a conformal truncated conical array. Using our method, lower sidelobe levels and deeper nulls are obtained. The simulation results verify the validity and efficiently of HDE-WTLSM.
ISSN:2079-9292