Effect of iRoot Fast Set root repair material on the proliferation, migration and differentiation of human dental pulp stem cells in vitro.

The present study investigated the effect of iRoot Fast Set root repair material (iRoot FS) on the proliferation, migration and differentiation of human dental pulp stem cells (hDPSCs). The hDPSCs were treated with eluates of iRoot FS at concentrations of 0.2 and 2 mg/mL, referred to as FS0.2 and FS...

Full description

Bibliographic Details
Main Authors: Yan Sun, Tao Luo, Ya Shen, Markus Haapasalo, Ling Zou, Jun Liu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5653327?pdf=render
Description
Summary:The present study investigated the effect of iRoot Fast Set root repair material (iRoot FS) on the proliferation, migration and differentiation of human dental pulp stem cells (hDPSCs). The hDPSCs were treated with eluates of iRoot FS at concentrations of 0.2 and 2 mg/mL, referred to as FS0.2 and FS2, respectively, and Biodentine (BD; Septodont, Saint Maur des Faussés, France) eluates at the corresponding concentrations as positive controls. A CCK8 assay was performed to determine cell proliferation. Wound healing and transwell assays were conducted to examine cell migration. Osteogenic differentiation was evaluated based on alkaline phosphatase activity, Alizarin Red S staining and quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) to analyze the mRNA expression of differentiation gene markers. Cell proliferation was higher in the FS and BD groups than in the blank controls at 3 and 7 days. Moreover, FS0.2 enhanced cell migration and significantly promoted the osteogenic differentiation of hDPSCs. These findings suggested that iRoot FS is a bioactive material that promotes the proliferation, migration and osteogenic differentiation of hDPSCs.
ISSN:1932-6203