Quantum corrected black holes from string T-duality

In this letter we present some stringy corrections to black hole spacetimes emerging from string T-duality. As a first step, we derive the static Newtonian potential by exploiting the relation between the T-duality and the path integral duality. We show that the intrinsic non-perturbative nature of...

Full description

Bibliographic Details
Main Authors: Piero Nicolini, Euro Spallucci, Michael F. Wondrak
Format: Article
Language:English
Published: Elsevier 2019-10-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269319306021
Description
Summary:In this letter we present some stringy corrections to black hole spacetimes emerging from string T-duality. As a first step, we derive the static Newtonian potential by exploiting the relation between the T-duality and the path integral duality. We show that the intrinsic non-perturbative nature of stringy corrections introduces an ultraviolet cutoff known as zero-point length in the path integral duality literature. As a result, the static potential is found to be regular. We use this result to derive a consistent black hole metric for the spherically symmetric, electrically neutral case. It turns out that the new spacetime is regular and is formally equivalent to the Bardeen metric, apart from a different ultraviolet regulator. On the thermodynamics side, the Hawking temperature admits a maximum before a cooling down phase towards a thermodynamically stable end of the black hole evaporation process. The findings support the idea of universality of quantum black holes. Keywords: Quantum corrected black hole, String T-duality, Zero-point length, Path integral duality
ISSN:0370-2693