Predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiers
Applying the knowledge that methyltransferases and demethylases can modify adjacent cytosine-phosphorothioate-guanine (CpG) sites in the same DNA strand, we found that combining multiple CpGs into a single block may improve cancer diagnosis. However, survival prediction remains a challenge. In this...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PeerJ Inc.
2021-02-01
|
Series: | PeerJ |
Subjects: | |
Online Access: | https://peerj.com/articles/10884.pdf |
id |
doaj-b23c7bd7ec92470c934b68bb3bf2be69 |
---|---|
record_format |
Article |
spelling |
doaj-b23c7bd7ec92470c934b68bb3bf2be692021-02-18T15:05:23ZengPeerJ Inc.PeerJ2167-83592021-02-019e1088410.7717/peerj.10884Predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiersXin Yu0Qian Yang1Dong Wang2Zhaoyang Li3Nianhang Chen4De-Xin Kong5State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, ChinaAgricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, ChinaState Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, ChinaAgricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, ChinaAgricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, ChinaState Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, ChinaApplying the knowledge that methyltransferases and demethylases can modify adjacent cytosine-phosphorothioate-guanine (CpG) sites in the same DNA strand, we found that combining multiple CpGs into a single block may improve cancer diagnosis. However, survival prediction remains a challenge. In this study, we developed a pipeline named “stacked ensemble of machine learning models for methylation-correlated blocks” (EnMCB) that combined Cox regression, support vector regression (SVR), and elastic-net models to construct signatures based on DNA methylation-correlated blocks for lung adenocarcinoma (LUAD) survival prediction. We used methylation profiles from the Cancer Genome Atlas (TCGA) as the training set, and profiles from the Gene Expression Omnibus (GEO) as validation and testing sets. First, we partitioned the genome into blocks of tightly co-methylated CpG sites, which we termed methylation-correlated blocks (MCBs). After partitioning and feature selection, we observed different diagnostic capacities for predicting patient survival across the models. We combined the multiple models into a single stacking ensemble model. The stacking ensemble model based on the top-ranked block had the area under the receiver operating characteristic curve of 0.622 in the TCGA training set, 0.773 in the validation set, and 0.698 in the testing set. When stratified by clinicopathological risk factors, the risk score predicted by the top-ranked MCB was an independent prognostic factor. Our results showed that our pipeline was a reliable tool that may facilitate MCB selection and survival prediction.https://peerj.com/articles/10884.pdfMethylation correlated blocksEnsemble modelLung adenocarcinoma |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xin Yu Qian Yang Dong Wang Zhaoyang Li Nianhang Chen De-Xin Kong |
spellingShingle |
Xin Yu Qian Yang Dong Wang Zhaoyang Li Nianhang Chen De-Xin Kong Predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiers PeerJ Methylation correlated blocks Ensemble model Lung adenocarcinoma |
author_facet |
Xin Yu Qian Yang Dong Wang Zhaoyang Li Nianhang Chen De-Xin Kong |
author_sort |
Xin Yu |
title |
Predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiers |
title_short |
Predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiers |
title_full |
Predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiers |
title_fullStr |
Predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiers |
title_full_unstemmed |
Predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiers |
title_sort |
predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiers |
publisher |
PeerJ Inc. |
series |
PeerJ |
issn |
2167-8359 |
publishDate |
2021-02-01 |
description |
Applying the knowledge that methyltransferases and demethylases can modify adjacent cytosine-phosphorothioate-guanine (CpG) sites in the same DNA strand, we found that combining multiple CpGs into a single block may improve cancer diagnosis. However, survival prediction remains a challenge. In this study, we developed a pipeline named “stacked ensemble of machine learning models for methylation-correlated blocks” (EnMCB) that combined Cox regression, support vector regression (SVR), and elastic-net models to construct signatures based on DNA methylation-correlated blocks for lung adenocarcinoma (LUAD) survival prediction. We used methylation profiles from the Cancer Genome Atlas (TCGA) as the training set, and profiles from the Gene Expression Omnibus (GEO) as validation and testing sets. First, we partitioned the genome into blocks of tightly co-methylated CpG sites, which we termed methylation-correlated blocks (MCBs). After partitioning and feature selection, we observed different diagnostic capacities for predicting patient survival across the models. We combined the multiple models into a single stacking ensemble model. The stacking ensemble model based on the top-ranked block had the area under the receiver operating characteristic curve of 0.622 in the TCGA training set, 0.773 in the validation set, and 0.698 in the testing set. When stratified by clinicopathological risk factors, the risk score predicted by the top-ranked MCB was an independent prognostic factor. Our results showed that our pipeline was a reliable tool that may facilitate MCB selection and survival prediction. |
topic |
Methylation correlated blocks Ensemble model Lung adenocarcinoma |
url |
https://peerj.com/articles/10884.pdf |
work_keys_str_mv |
AT xinyu predictinglungadenocarcinomadiseaseprogressionusingmethylationcorrelatedblocksandensemblemachinelearningclassifiers AT qianyang predictinglungadenocarcinomadiseaseprogressionusingmethylationcorrelatedblocksandensemblemachinelearningclassifiers AT dongwang predictinglungadenocarcinomadiseaseprogressionusingmethylationcorrelatedblocksandensemblemachinelearningclassifiers AT zhaoyangli predictinglungadenocarcinomadiseaseprogressionusingmethylationcorrelatedblocksandensemblemachinelearningclassifiers AT nianhangchen predictinglungadenocarcinomadiseaseprogressionusingmethylationcorrelatedblocksandensemblemachinelearningclassifiers AT dexinkong predictinglungadenocarcinomadiseaseprogressionusingmethylationcorrelatedblocksandensemblemachinelearningclassifiers |
_version_ |
1724262773583511552 |