A class of elliptic operators in R^3 in non divergence form with measurable coefficients

<p style="font-style: normal;"><span style="font-family: DejaVu Sans,sans-serif;"><span>In an open cylinder of </span><strong>R</strong><sup><span>3</span></sup> <span>a linear uniformly elliptic operator in non-di...

Full description

Bibliographic Details
Main Authors: Orazio Arena, Paolo Manselli
Format: Article
Language:English
Published: Università degli Studi di Catania 1993-05-01
Series:Le Matematiche
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/551
Description
Summary:<p style="font-style: normal;"><span style="font-family: DejaVu Sans,sans-serif;"><span>In an open cylinder of </span><strong>R</strong><sup><span>3</span></sup> <span>a linear uniformly elliptic operator in non-divergence form, with coefficients time independent but measurable only, is investigated.</span></span></p> <p style="font-style: normal;"><span style="font-family: DejaVu Sans,sans-serif;">Existence and uniqueness results in suitable Sobolev spaces for the Dirichlet problem are obtained.</span></p>
ISSN:0373-3505
2037-5298