Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt
<p>Abstract</p> <p>Background</p> <p>The Polaris valve is a newly released hydrocephalus shunt that is designed to drain cerebrospinal fluid (CSF) from the brain ventricles or lumbar CSF space. The aim of this study was to bench test the properties of the Polaris shunt,...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2008-04-01
|
Series: | Cerebrospinal Fluid Research |
Online Access: | http://www.cerebrospinalfluidresearch.com/content/5/1/8 |
id |
doaj-b1dc3d6519b546229aa877931f00e139 |
---|---|
record_format |
Article |
spelling |
doaj-b1dc3d6519b546229aa877931f00e1392020-11-25T02:32:03ZengBMCCerebrospinal Fluid Research1743-84542008-04-0151810.1186/1743-8454-5-8Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shuntPickard John DRichards Hugh KCzosnyka MarekAllin David MCzosnyka Zofia H<p>Abstract</p> <p>Background</p> <p>The Polaris valve is a newly released hydrocephalus shunt that is designed to drain cerebrospinal fluid (CSF) from the brain ventricles or lumbar CSF space. The aim of this study was to bench test the properties of the Polaris shunt, independently of the manufacturer.</p> <p>Methods</p> <p>The Polaris Valve is a ball-on-spring valve, which can be adjusted magnetically <it>in vivo</it>. A special mechanism is incorporated to prevent accidental re-adjustment by an external magnetic field. The performance and hydrodynamic properties of the valve were evaluated in the UK Shunt Evaluation Laboratory, Cambridge, UK.</p> <p>Results</p> <p>The three shunts tested showed good mechanical durability over the 3-month period of testing, and a stable hydrodynamic performance over 45 days. The pressure-flow performance curves, operating, opening and closing pressures were stable. The drainage rate of the shunt increased when a negative outlet pressure (siphoning) was applied. The hydrodynamic parameters fell within the limits specified by the manufacturer and changed according to the five programmed performance levels. Hydrodynamic resistance was dependant on operating pressure, changing from low values of 1.6 mmHg/ml/min at the lowest level to 11.2 mmHg/ml/min at the highest performance level. External programming proved to be easy and reliable. Even very strong magnetic fields (3 Tesla) were not able to change the programming of the valve. However, distortion of magnetic resonance images was present.</p> <p>Conclusion</p> <p>The Polaris Valve is a reliable, adjustable valve. Unlike other adjustable valves (except the Miethke ProGAV valve), the Polaris cannot be accidentally re-adjusted by an external magnetic field.</p> http://www.cerebrospinalfluidresearch.com/content/5/1/8 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pickard John D Richards Hugh K Czosnyka Marek Allin David M Czosnyka Zofia H |
spellingShingle |
Pickard John D Richards Hugh K Czosnyka Marek Allin David M Czosnyka Zofia H Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt Cerebrospinal Fluid Research |
author_facet |
Pickard John D Richards Hugh K Czosnyka Marek Allin David M Czosnyka Zofia H |
author_sort |
Pickard John D |
title |
Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt |
title_short |
Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt |
title_full |
Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt |
title_fullStr |
Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt |
title_full_unstemmed |
Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt |
title_sort |
investigation of the hydrodynamic properties of a new mri-resistant programmable hydrocephalus shunt |
publisher |
BMC |
series |
Cerebrospinal Fluid Research |
issn |
1743-8454 |
publishDate |
2008-04-01 |
description |
<p>Abstract</p> <p>Background</p> <p>The Polaris valve is a newly released hydrocephalus shunt that is designed to drain cerebrospinal fluid (CSF) from the brain ventricles or lumbar CSF space. The aim of this study was to bench test the properties of the Polaris shunt, independently of the manufacturer.</p> <p>Methods</p> <p>The Polaris Valve is a ball-on-spring valve, which can be adjusted magnetically <it>in vivo</it>. A special mechanism is incorporated to prevent accidental re-adjustment by an external magnetic field. The performance and hydrodynamic properties of the valve were evaluated in the UK Shunt Evaluation Laboratory, Cambridge, UK.</p> <p>Results</p> <p>The three shunts tested showed good mechanical durability over the 3-month period of testing, and a stable hydrodynamic performance over 45 days. The pressure-flow performance curves, operating, opening and closing pressures were stable. The drainage rate of the shunt increased when a negative outlet pressure (siphoning) was applied. The hydrodynamic parameters fell within the limits specified by the manufacturer and changed according to the five programmed performance levels. Hydrodynamic resistance was dependant on operating pressure, changing from low values of 1.6 mmHg/ml/min at the lowest level to 11.2 mmHg/ml/min at the highest performance level. External programming proved to be easy and reliable. Even very strong magnetic fields (3 Tesla) were not able to change the programming of the valve. However, distortion of magnetic resonance images was present.</p> <p>Conclusion</p> <p>The Polaris Valve is a reliable, adjustable valve. Unlike other adjustable valves (except the Miethke ProGAV valve), the Polaris cannot be accidentally re-adjusted by an external magnetic field.</p> |
url |
http://www.cerebrospinalfluidresearch.com/content/5/1/8 |
work_keys_str_mv |
AT pickardjohnd investigationofthehydrodynamicpropertiesofanewmriresistantprogrammablehydrocephalusshunt AT richardshughk investigationofthehydrodynamicpropertiesofanewmriresistantprogrammablehydrocephalusshunt AT czosnykamarek investigationofthehydrodynamicpropertiesofanewmriresistantprogrammablehydrocephalusshunt AT allindavidm investigationofthehydrodynamicpropertiesofanewmriresistantprogrammablehydrocephalusshunt AT czosnykazofiah investigationofthehydrodynamicpropertiesofanewmriresistantprogrammablehydrocephalusshunt |
_version_ |
1724821854476042240 |