Effects of mis-alignment between dispersal traits and landscape structure on dispersal success in fragmented landscapes
Dispersal is fundamental to population dynamics and hence extinction risk. The dispersal success of animals depends on the biophysical structure of their environments and their biological traits; however, comparatively little is known about how evolutionary trade-offs among suites of biological trai...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Royal Society
2019-01-01
|
Series: | Royal Society Open Science |
Subjects: | |
Online Access: | https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.181702 |
id |
doaj-b1cb1da0c8194ba9949824cf7d60d001 |
---|---|
record_format |
Article |
spelling |
doaj-b1cb1da0c8194ba9949824cf7d60d0012020-11-25T03:10:07ZengThe Royal SocietyRoyal Society Open Science2054-57032019-01-016110.1098/rsos.181702181702Effects of mis-alignment between dispersal traits and landscape structure on dispersal success in fragmented landscapesJustine L. AtkinsGeorge L. W. PerryTodd E. DennisDispersal is fundamental to population dynamics and hence extinction risk. The dispersal success of animals depends on the biophysical structure of their environments and their biological traits; however, comparatively little is known about how evolutionary trade-offs among suites of biological traits affect dispersal potential. We developed a spatially explicit agent-based simulation model to evaluate the influence of trade-offs among a suite of biological traits on the dispersal success of vagile animals in fragmented landscapes. We specifically chose traits known to influence dispersal success: speed of movement, perceptual range, risk of predation, need to forage during dispersal, and amount of suitable habitat required for successful settlement in a patch. Using the metric of relative dispersal success rate, we assessed how the costs and benefits of evolutionary investment in these biological traits varied with landscape structure. In heterogeneous environments with low habitat availability and scattered habitat patches, individuals with more equal allocation across the trait spectrum dispersed most successfully. Our analyses suggest that the dispersal success of animals in heterogeneous environments is highly dependent on hierarchical interactions between trait trade-offs and the geometric configurations of the habitat patches in the landscapes through which they disperse. In an applied sense, our results indicate potential for ecological mis-alignment between species' evolved suites of dispersal-related traits and altered environmental conditions as a result of rapid global change. In many cases identifying the processes that shape patterns of animal dispersal, and the consequences of abiotic changes for these processes, will require consideration of complex relationships among a range of organism-specific and environmental factors.https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.181702agent-based modeldispersalbiological traittrade-offspatially explicit simulation modelvirtual ecology |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Justine L. Atkins George L. W. Perry Todd E. Dennis |
spellingShingle |
Justine L. Atkins George L. W. Perry Todd E. Dennis Effects of mis-alignment between dispersal traits and landscape structure on dispersal success in fragmented landscapes Royal Society Open Science agent-based model dispersal biological trait trade-off spatially explicit simulation model virtual ecology |
author_facet |
Justine L. Atkins George L. W. Perry Todd E. Dennis |
author_sort |
Justine L. Atkins |
title |
Effects of mis-alignment between dispersal traits and landscape structure on dispersal success in fragmented landscapes |
title_short |
Effects of mis-alignment between dispersal traits and landscape structure on dispersal success in fragmented landscapes |
title_full |
Effects of mis-alignment between dispersal traits and landscape structure on dispersal success in fragmented landscapes |
title_fullStr |
Effects of mis-alignment between dispersal traits and landscape structure on dispersal success in fragmented landscapes |
title_full_unstemmed |
Effects of mis-alignment between dispersal traits and landscape structure on dispersal success in fragmented landscapes |
title_sort |
effects of mis-alignment between dispersal traits and landscape structure on dispersal success in fragmented landscapes |
publisher |
The Royal Society |
series |
Royal Society Open Science |
issn |
2054-5703 |
publishDate |
2019-01-01 |
description |
Dispersal is fundamental to population dynamics and hence extinction risk. The dispersal success of animals depends on the biophysical structure of their environments and their biological traits; however, comparatively little is known about how evolutionary trade-offs among suites of biological traits affect dispersal potential. We developed a spatially explicit agent-based simulation model to evaluate the influence of trade-offs among a suite of biological traits on the dispersal success of vagile animals in fragmented landscapes. We specifically chose traits known to influence dispersal success: speed of movement, perceptual range, risk of predation, need to forage during dispersal, and amount of suitable habitat required for successful settlement in a patch. Using the metric of relative dispersal success rate, we assessed how the costs and benefits of evolutionary investment in these biological traits varied with landscape structure. In heterogeneous environments with low habitat availability and scattered habitat patches, individuals with more equal allocation across the trait spectrum dispersed most successfully. Our analyses suggest that the dispersal success of animals in heterogeneous environments is highly dependent on hierarchical interactions between trait trade-offs and the geometric configurations of the habitat patches in the landscapes through which they disperse. In an applied sense, our results indicate potential for ecological mis-alignment between species' evolved suites of dispersal-related traits and altered environmental conditions as a result of rapid global change. In many cases identifying the processes that shape patterns of animal dispersal, and the consequences of abiotic changes for these processes, will require consideration of complex relationships among a range of organism-specific and environmental factors. |
topic |
agent-based model dispersal biological trait trade-off spatially explicit simulation model virtual ecology |
url |
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.181702 |
work_keys_str_mv |
AT justinelatkins effectsofmisalignmentbetweendispersaltraitsandlandscapestructureondispersalsuccessinfragmentedlandscapes AT georgelwperry effectsofmisalignmentbetweendispersaltraitsandlandscapestructureondispersalsuccessinfragmentedlandscapes AT toddedennis effectsofmisalignmentbetweendispersaltraitsandlandscapestructureondispersalsuccessinfragmentedlandscapes |
_version_ |
1724660372254752768 |